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ABSTRACT

Free wake techniques for performance prediction and

optimization of hovering rotor are discussed. The influence

functions due to vortex ring, vortex cylinder, and source or

vortex sheets are presented. The vortex core sizes of rotor

wake vortices are calculated and their importance is

discussed. Lifting body theory for finite thickness body is

developed for pressure calculation, and hence performance
• ; ;

'prediction of hovering rotors. Numerical optimization

technique based on free wake.._lifring"~L lin~e~ the'ory is

- presented and discussed. It is I demonstrated that formal
- — i ' • -

optimization can be used with the Implicit and nonlinear

objective or cost function such as the performance of hovering

rotors as .used in this report.
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LIST OF SYMBOLS

Hessian matrix

lift curve slope

normal velocity influence coefficients due to source

normal velocity influence coefficients doe to vortex

: direction cosines of t

: direction cosines of t

: direction cosines of t

: potential influence coefficients due to source

: potential influence coefficients due to doublet

C : blade chord

C : normal force coefficientn

Cp : pressure coefficient or power coefficient

C^ .' : tangential velocity influence coefficient due to source



C., : tangential velocity influence coefficient due to vortex

C, : drag coefficient

C^ : lift coefficient

CT : thrust coefficient

CD : torque coefficient

d : vortex core diameter or size •

E : elliptic integral of first kind

e. : azimuthal unit vector
<t>

e : radial unit vector

F : elliptic integral of second kind or objective function

F : force acting on lifting body.

FMIN : value of objective function F at a = 0

FV : value of objective function F at a = V

FW : value of objective function F at a = W

G : gradient vector of objective function F

H : approximate inverse of Hessian matrix A

h : spacing between ring vortices

M : moment acting on lifting body

M : position where induced velocity is computed

M' : position of vortex

N : normal force acting on blade section

n : unit normal vector to body surface

8



P : axial momentum

Q : torque acting on rotor

R : blade radius

r : radial coordinate of ring vortex

r : distance between singularity and field point

r : penalty parameter
P
S : search direction for minimization

T : thrust produced by rotor

-»• -\
tx

t • : unit vectors of panel center coordinate

^ ,
U : total velocity with respect to blade

U^ : free stream velocity

W . : potential influence coefficient due to doublet

W : wake surface

w : downwash

X : position of control point

X : position of concentrated vortex

X. : design variable vector

z ; axial coordinate of ring vortex

Greek Symbols

<x : angle of attack or move parameter in search direction

5(z) : delta function



S k : kronecker delta

e : vortex core radius

TI : .normalized blade radius

Y •: normalized bound circulation

r : bound circulation

© : blade pitch angle

A : normalized downwash

<{> : azimuthal angle or velocity potential

p : air density

a • solidity or source strength

\\> : Stokes stream function

w : swirl angular velocity or vorticity

ft : rotation velocity of rotor
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CHAPTER 1

INTRODUCTION

1.1 Purpose

The best aerodynamic design of hovering helicopter

rotor blades, propeller blades or wind turbine rotor blades

can be achieved by the accumulated performance data, the

engineering experience, and good performance analysis and

design codes. A reliable aerodynamic performance analysis

can be carried out by computational fluid dynamics.

However, heuristic parametric analysis of many different

configuration of blades by CFD is an expensive means of

achieving good aerodynamic design.

A systematic method to achieve the best design is to

set up a suitable quantity to maximize or to minimize. This

quantity is combined into the objective function. When

there are constraints which the best design should not

violate, these constraints can be grouped into the penalty

function with the objective function. When the penalty or

cost function which the design should pay is minimized, the

best design is achieved.

Usually the penalty function is a nonlinear function of

a number of independent design parameters. Searching the

best combination of the design variables to achieve the
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minimum "cost can be done numerically by various methods.

Methods such as the steepest descent, conjugate direction,

variable metric or quasi-Newton, and Newton's method can be

used to minimize a function. The function minimization

requires a performance analysis code to evaluate the penalty

function at each design combination, the gradient or

sensitivity calculation for methods such as conjugate

direction or quasi-Newton method, and Hessian calculation

for Newton's method. Hence the design computed by the

combination of CFD and function minimization can not be

better than the accuracy of the code. The codes used may be

potential, Euler, or Reynolds averaged Navier-Stokes ones.

Among potential flow codes one may distinguish between

surface singularity type methods such as lifting line,

lifting surface, panel method, and small disturbance or full

potential finite difference method.

The optimum design of hovering helicopter or propeller

blades can be achieved by minimizing the required power to

sustain induced' and profile drag while keeping the
\ \ - , ._

thrust constant. The penalty function for this problem is a

combination of the objective function which is the required

power and the constraint function which is the given thrust.

This penalty function is suitable for converting a

constrained function minimization to an unconstrained

function minimization. In function minimization the

12



gradient calculation by direct perturbation of design

variables can usually be done with less than 7 variables.

Hence,'' a performance analysis code can be combined with a

numerical optimization code, that is, function minimization

code to determine the best combination of design variables.

With more than 10 design variables the analytic gradient

calculation code is a. more powerful and accurate method for

determining which design variables are best than finite

difference methods.

The objective of this research is to compute the

optimum chord and twist distribution of a hovering rotor.

The methods used are lifting line and lifting surface

theories coupled with a fast free wake model' developed by

Miller(ref.s 7-11). The profile drag is calculated by blade

element theory using the effective angle of attack obtained

from lifting line or surface theory. The objective function

is the power due to induced and profile drag and the

constraint function is the given thrust. The optimization

code used are quasi-Newton method or conjugate gradient

method. QNMDIF, the optimization code of quasi-Newton

method developed by Kennely at NASA Ames, is used. This

optimization code is combined with the performance analysis

code of lifting line and lifting surface theories coupled

with fast free wake model. Only the optimization using

lifting line is performed and presented. During

13



optimization iteration the objective and constraint

functions are computed by free wake lifting line theory
N

exactly. In all optimizations the penalty function is used

to convert the constrained optimization to the unconstrained

optimization.

1/4



1.2 Technical Approach

The hovering rotor performances predicted by 3-D

momentum and by free wake lifting line theory are compared

in section (2.1). The bound circulation distribution

obtained by 3-D momentum theory is very different from that

found from free wake theory. The influence functions for a

vortex ring, a vortex cylinder, a trailing vortex filament,

and a rectangular vortex sheet or source are given in

section (2.2). Also, in section (2.2) the swirl loss

correction method is derived. In section (2.3) the free

wake lifting line theory is shown to predict the results

which are in good agreement with the experimental results of

ATB tilt rotor of Ref.(6). The vortex core size of a

hovering rotor is calculated and is shown to grow as the

vortex ring moves further away from the rotor plane in

section (2.4).

In section (3.1) vortex lattice and vortex panel

lifting surface theories are derived and their applications

to the hovering rotor are discussed. In section (3.2) the

surface singularity method is shown to be the solution of

Green's function applied to the rotor or the wing problems.

The superposition method of sources and vortex sheets is

derived for the pressure calculation and hence the

performance prediction of any lifting body in section (3.3).

15



In section (3.4) the free wake geometry is computed by

integrating the local velocity on the wake element with

respect to the time after its generation by the blade. The

overall results obtained by the application of the free wake

surface singularity method to the hovering rotor and wings

are shown and compared with past results in section (3.5).

In section (4.1) several different choices of the

objective function and quadratic penalty functions are

derived and the chosen seven different set of design

variables are discussed. The direction of the function

minimization is presented as the Quasi-Newton and Conjugate

gradient method in section (4.2). Once the minimization

direction is determined, the multi-dimensional problem

becomes an one- dimensional minimization one. The parabolic

line search technique is presented in section (4.3). In

section (4.4) three types of rotor blade geometries are used

for the formal optimization of the hovering performance.

They are the rotor of Ref.68, which has the straight twist

and a constant chord, a modified rotor, which has the

straight twist and a taper ratio of 0.3. The rotor of

Ref.68 is chosen because the experimental and theoretical

results on bound circulation are available. The third rotor

r~" ~
is, a double twisted and tapered rotor.

16



1.3 Review Of Past Work

The vortex roll-up, or core size of the resulting

vortex, and vortex motion are treated in

Ref.slll,2,3,4,5,30,313. Free wake lifting line or surface

theory was applied to the performance prediction of hovering

rotor in Ref.s C7-14,24,28,29,353. Surface singularity

methods were used for the analysis of wing and rotor blade

in Ref.s C15-22,27,33,34,36,55-633. The review and

applications of formal optimization techniques were

presented in Ref.s C25,37,39,40,41,42,43,44,45,46,47,483.

The theoretical basis of numerical optimization was

formulated in Ref.s C49,50,51,52,53,543. The detailed

review of all previous work are handled in the introduction

to each chapter.

From all previous work the vortex motion, interaction

to roll-up, the effect of vortex position on the rotor

performance are well developed theoretically and the results

are in good agreement with experimental data. Surface

singularity methods were successful for the calculation of

pressure field for the wing or rotor blade with fixed wake

geometry. Several optimization program such as CONMIN,

QNMDIF, or others were used to improve the aerodynamic and

dynamic performance of wings, or rotors, or structures. In

most cases the optimized results were only as good as the

17



heuristic and parameter optimization. Several theories on

numerical optimization were presented and tested for the

several explicit nonlinear objective functions.

18



CHAPTER 2

FREE WAKE LIFTING LINE THEORY AND VORTEX CORE

SIZE OF ROTOR WAKE VORTICES

2.1 FREE WAKE MODEL

The wake of rotor blades is piled below the blades as

shown in figure (2-1) unlike the wake of an ordinary wing

which moves away from the wing. Since the effect of free

wake vortices on the performance is very profound, a free

wake analysis is necessary for the flow prediction of a wing

which has leading or side edge vortices. For such wings the

free wake results can be used as boundary conditions for the

near field solutions of Euler or Navier-Stokes equation as

done in Ref.(32).

The fast free wake model developed in Ref.s

C7,8,9,10,113 are discussed in this section and was used for

the formal optimization of hovering performance with lifting

line or surface theory. The work done by the induced drag

of rotor or wing appears as the kinetic energy due to

trailing vortices as discussed in section (2-4). The study

of the motion of trailing vortices is necessary for the

determination and reduction of the induced drag and for the

minimizatioin of the wake hazard to the following aircraft.

As developed in Ref.(7) the free wake is divided into

three sections : the near wake attached to the blade on the

19



plane of rotation, an intermediate wake of rolled-up ring

vortices, a far wake of serai-infinite vortex cylinders. The

near wake is composed of a series of circular arc vortex

filaments which span the half of the blade spacing. After

leaving the blade as a vortex sheet, this distributed wake

rolls up quickly according to the conservation of linear and

angular momentum into helices which are approximated by

vortex rings. The tip vortex is formed from the tip to the

point of maximum bound circulation. A second roll up is

assumed between this point of maximum circulation and the 15

percent spanwise position. The remaining circulation to the

root rolls up into a third vortex. The effect of root

vortex is neglected during the actual free wake calculation

since its effect on the performance is negligible ,while

making the solution converge slowly. The existence of the

root vortex is doubtful for the hovering flight. There are

four vortex rings in axial direction to represent the

intermediate wake. The far wake consists of semi-infinite

vortex cylinders starting at a distance from the rotor one

vortex spacing below the last intermediate vortex. The

geometry of this wake model is shown in Figure (2-1) \taken

from Ref.(7). Figure (2-2) shows -the difference in

predicted bound circulations between 3-D momentum theory and

free wake lifting line theory.> Table (1) and (2) present

the results obtained by momentum theory and free wake



lifting line theory. In table (1) 10 spanwise divisions

were used and in table (2) 15 spanwise divisions were used.

In both tables CT and CP are thrust and power coefficients.

CPI is the power coefficient due to the induced drag. FM is

the figure of merit, CTR and CPR are thrust and power

coefficients with wake rotation effect included.

21



2,2 DERIVATION OF INFLUENCE COEFFICIENTS AND MATRIX SOLUTION

(a) The velocities due to vortex ring or cylinder.

Ref.(7) gives the induced velocity due to a ring

vortex derived by using the Biot-Sarvart law. The ring

vortex has a radius of rR and an axial distance of z

from the rotor blade of radius R as shown in figure.

The vertical components of velocity induced at r\ due to

a ring vortex of radius r is

.2*

0

f r(r
j (T2 +

r
4HR

22



The radial component of induced velocity at TI is

F f2 i r zr cos<t d<D
- 4HR (T)2 + r2 + 22 2- 4HR

From ref.(7), I1 and I2 are given as follows

:, = I — CK - E£l-0.5k2(l+r/r|)}/(l-k2)3i v rT|

v i 2 4rriwhere k =
(r + TI + z2

E =1 + 0.5(F-0.5)(1 - k2) + (3/16)(F-l-l/12)(l-k2)2+ ...

K = F + 0.25(F-1)(1 - k2)+(9/64)(F-l-1/6)(l-k2)2+ ...

and F = In
Jl-k2

The vertical velocity due to the far wake of serai-infinite

cylinder at TI is obtained by integrating equation (2-1) from z

to °° .

°°27r~ 1 dTf f r(r - ncosfr) (
™ ~ 4HR dzJ2Jo ( 2 + r2 + 22_

23



27T

r(r -
4HR dzj _2+ r2_ 2rTicosd> (n2+ r2+

0

2ir

x ( (t)) Q.tf)4HR d
0

2L % I(0 j III _ 2II (21 _ 1}

The radial velocity due to the far wake of semi-infinite cylinder is

°o 2ir
_z
2 2 2 3 / 2
1 + r + z -2rT)cos$>

7 = 1 drf f zrcos<l) d<|)'dz
=

z 0

2ir
rcos0

1 i??fl CK(2-k2) -2ED4HR dz

(b) The velocity due to the trailing vortex filaments,

The velocity induced by a element of strength

? = T (1 4- |^- ) and length AS = 2Ax at point M(x,y,z)

Is given in ref.(28) as follows.

M(x,y,z7



_ If
- 4HJ

if FFF1 x m + x')
IJ p
-Ax

LetLet ws = _ _ir M'M x n dx,
4nJ P3 ax

-Ax

Ax
-+ 3 f M' M x TV ' iM = - —i " " x ix •*•v 4nj ._3

-AX *

Then, W = 0
Ji O

Wys ' - 4]T

wzs = 41 as-y-r. i

W = 0xv

V = - 41

Wzv = 4ff

„, QV.0 T 1 ,-x + Ax x - Ax -.,where I = 5 =—C—= = J
3 2 -t- z2 ) Rl R3

, R -t- xAx R - xAx
T = r—- -

V 2Ax2(y2
+ z2) Rl R3
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•{
R^ = J(x + Ax? + y + z

and R. = J (x - Ax? 4- y2+ z:

The velocity induced by an vortex element of circular

arc in near wake is given in ref.(29).

(c) The velocities due to a rectangular panel of vortex

sheet or source.

The velocity induced by a rectangular vortex sheet

is given in ref.(28) and one by a source in ref.(27)

as follows. These velocities will be required later for

a lifting body solution. /

M(x,y,z>

-»- -»r = & =

.AX

AX

L

The velocity Induced at M by a constant vortex panel is :W (M)
W

2B



Wc(M) WWxc

W = 0.0yc

Wzc = 41 J2

The velocity induced at M by a constant source panel is WQ(M)•D

(M) wxs

Wys

£_ T
4U J3

fl J4

Wzs " Si Jl

/~H2\ t'
Here, J, = arc tan —5— - arc tan -

i {ZK̂ J v.2

+ arc - arc

J2 ~ ln
.(y + Ay) + R, (y - Ay) + R

- Ay) (y + Ay)

J3 = ln
R3 - 2Ay R4 + R2 + 2Ay

2Ay % "*" *£- 2Ay

+2Ax -2 Ax
and J. = In -2Ax

-ĵ ,

+ RI +2Ax J

Here, H, = (y + Ay) • (x + Ax)
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H2 = (y - Ay) • (x -i- Ax)

H3 = (y - Ay) • (x - Ax)

H4 = (y + Ay) • (x - Ax)

R1 = J(x + Ax)
2+ (y + Ay)2-*- Z2

= J(x - Ax)2-t- (y + Ay)2+ z

R3 = J(x + Ax)
2+ (y - Ay)2+ z2

R - J(x -Ax)2+ (y - Ay)2+ z2

The induced.velocities with respect to a reference coordinate

are obtained from the velocities with respect to panel center

coordinate. Let three unit vectors of panel center coordinate

be £ r t and t with respect to a reference coordinate,
x y z

Then, the three unit vectors are given in terms of direction

cosines,

' A12 ' A13

(A21 ' A22 r A23

= (A31 ' A32/ A33

28



The velocity, V with respect to a reference coordinate is

obtained by transforming the velocity, W with respect to

panel center coordinate.

Vx = All Wx + A21 Wy + A31 Wz

Vy - A12 Wx + A22 Wy + A32 Wz

Vz " A13 Wx + A23 Wy + A33 Wz

(d) Matrix solution

The lift is related to the bound circulation

by Kutta-Joukowski law.

L = 0.5 p U2a a C = p U T (2-2)

T = 0.5 ( Ji2r2 + w2 }/2 a C (0 + gp ) (2-3)

where A is the rotational velocity, r is the radius, w is the

downwash, 0 is the pitch angle, a is the lift curve slope, C

is the chord, T is the bound circulation, and <x is the local

blade angle of attack.

r ? 9 i/? r \
-*-= = y = 0.5( r\ + \Z T a fe (0 + £ ) (2-4)

where T) is the normalized radius and x is the normalized

downwash. Then,
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xi = Ai;j Yj - (2~5)

A. . are the influence coefficients which are the induced

velocities on blade station, i, due to all trailing vortices

of unit circulation on blade station, j.

= 0.5 a u (0i + A1:} y /J]± ) - (2-6)

C I - 0.5 a A. . U /n, 3 ty . = 0.5 a U 0. - (2-7)
K Ij i 1 J K 1 1

(2-8)

Here, I is the unit matrix. The above linear system of

equations are solved until £ y. } convergevs for the fixed

wake geometry. Then a new wake geometry is obtained by

integrating the local velocities on all wake vortices

and a new Influence coefficients are calculated from the

new wake geometry. This procedure is repeated until the

bound circulation distribution and the wake geometry are

converged.

(e) Correction of the swirl loss to matrix solution.

By applying linear and angular momentum balance to a

blade element of dr we obtain the following.

dT = dm w' =2 dm w, where dm = p w 2?rr dr

2
dT = 4 irp w r dr

dQ = dm u'r = 2 dm wr x r

30



dQ = 4 irp w u»r dr

Here, dT and dQ are the blade element thrust and torque

w is the local angular velocity due to swirl.

2
HP - 4 TTP w r dr _ . 2 .dCT = - r _ ? — = 4 x TI dr)

1 pir R^Tir

3 . . _ '
HP - 4 TTP w u> r dr _ w 3 ,
dCQ - - 223 - ~ 4 x n ^ dT1y PIT irjrir "

For uniform X, C_, = 2 X and CQ = x ^

dCQ= 4 X dT1

2 2= 0.5 a CC0 sin(0 - a) + C , cos(© - a)D T\ (T) + X )dri
X CL

^ = -| a CC0 s in(© - a) + C, cos(0 - a)3 (? + -)
i i K O X a . X T )

Here, a Is the local solidity. The angle of attack correction

due to swirl is, to first order,

<V= 0 + r(fl - u)

This new angle of attack is used in computing the performance.

Usually the swirl loss is negligible for the hovering flight

and was neglected during the formal optimization.
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2.3 APPLICATION TO JVX

A recent paper (ref.6) has presented experimental

results on the hovering performance and wake geometry of a

highly twisted rotor. It is the purpose of this section to

show that the fast free wake model suggested in Ref.(lO) and

described more fully in Ref.s(7) and (8) appears to predict

the observed wake geometry and the rotor performance over

the operating range. Figure (2-6) shows the blade shape of

ATB tilt rotor used in the calculation. Figure (2-3)

compares the predicted radial contraction of tip vortices

with the experimental results of Ref.(6). In Figure (2-4)

the predicted axial positions of tip vortices are a little

above the experimental results. This discrepancy is

expected to disappear if the induced velocity below the

following blade is computed behind the following blade. The

average of the induced velocities on the blade and on the

position below and behind the following blade represents the

influence of the near wake of the following blade better

than the average of the velocity immediately below the

following blade. Fig.(2-5) compares the figure of merit

obtained from present analysis with the experimental results

in Ref.(6). The hovering performance of ATB tilt rotor is

well predicted by the present free wake lifting line theory.

The good agreements with experiments show that the
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present technique can be used for a parameter optimization

or for a formal optimization of hovering performance. The

execution time of the present program is about 10-20 seconds

on VAX 750. The hovering condition has no free stream, that

is, all flow quantities are the perturbations. Hence, it is

the most severe test of the vortex theory. It is known that

the vortex far(wake) geometry determined by following the

local velocity satisfies the Euler equation. Hence, the

strict calculation of the vortex position is important for

the analysis of the flow field.
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2.4 VORTEX CORE SIZE AND ITS IMPORTANCE

Vortex core size is a physical parameter which

determines the potential flow region and the rotational flow

region , or the inviscid flow and the viscous flow region in

subsonic flow. In rotor aerodynamics the vortex core size

is needed for the determination of the self induced velocity

of a ring vortex which is given by Lamb (ref.66). For the

representation of shear flows by vortices the vortex core

size is needed to avoid the infinite velocity and hence the

infinite kinetic energy in the flow field. In this section

the work done by the induced drag is shown to be the kinetic

energy carried by the vortices in the flow. A model for the

prediction of the core diameter of a rolled-up far wake

vortex of a lifting three dimensional wing was proposed by

Spreiter and Sacks (ref. 1). They equated the downward

momentum and the kinetic energy generated by the wing to

those of the flow after roll-up to determine the spanwise

position of the vortices and their core diameter. Ferziger

(ref. 2) determined the vortex spacing to diameter ratio of

the vortex array modelling an infinite free shear flow. He

conserved the circulation and kinetic energy of the flow

before and after roll-up. Landahl (ref. 3) obtained the

radial position of vortices and the far wake core diameter

of rotor wake vortices by conserving momentum and kinetic

energy during roll-up and by using Prandtl's planar wake or
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doubly infinite vortex ring model. Widnall (ref. 4) showed

the invariants of vortex motion as conservation of momentum,

angular momentum and kinetic energy. Wu et. al.(ref. 5)

related the changes in the first and second moment of

vorticity in the .flow to the force on the body which

generated the vortices. In the following the semi-infinite

array of vortex rings is used to determine the core diameter

of the interminate wake vortex ring. . The momentum and

kinetic energy by one revolution of the rotor were equated

to those in the wake- flow of one vortex ring spacing. The

vortex ring was considered to be in solid-body rotation with

potential flow outside the core (Rankine vortex).

The force and moment on the body are related to the

derivative of the first and second moment of vorticity

in the wake by Wu et. al.fref. 5).

if dB (2-9)

M = § d r r f r x ( w x r ) d V + p ^ f r x t f d B — (2-10)3 dt )y dt ,lg

where w is the vorticity and U is the velocity of the body.

The volume V is the entire vortical region and the volume B

is the region inside the solid body. When the solid body is

steady, the moment of vorticity is equal to the momentum due

to the rotor according to equation (2-9). To determine the

moment of vorticity in the wake, a circular vortex sheet is

considered which is generated by a rotating blade.
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The second moment of vorticity due to a circular vortex sheet

is found to tie zero by straightforward application of equation

(2-10). The axial momentum associated with each vortex ring is

2a = TTP r0 R
2

Ro
R2 = ̂  f r T(r) dr (2-12)

LQ ;0

To determine the kinetic energy of the ring vortex system

we use the solution given by Lamb (1932) art. 161, for

Stokes stream function for the potential flow outside the

core of a single vortex ring.

¥ = ¥ft = - £- (rn + r,) C K(k) - E(k)IJ (2-13)0 Zir 1 2

,where K and E are the complete elliptic integrals of the

first and second kinds, respectly, and where

rn = I z2 + (r - r,, )2

r2 = j z
2
 t (r H- r0 )

2

k = (r2 - r1 ^tr2 + r^)

The velocity components are given by

u = -i|| -(2-14)

w " ~7 If «2

For the semi-infinite vortex ring system we thus have
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. *-~ Fn — (2'16)

.where Fn = (r ln +• r2n
 } C K ( kn } " E ( kn ) Z I (2-17)

r, = J (z - nh )2 + (r - R)2 (2-18)In

r0 = J 2 2
0 (z - nh) + (r + R) - (2-19)Zn

1- _ / v* _V» \ / / V* _1_ V* \ ._ f O — *? fi '
kn " (r2n rln )/( r2n + rln } (2 2°'

The kinetic energy in one vortex spacing is

K = irp || (u2 + w2 ) dz r dr (2-21)

= irp jj (w -^ — u -r̂ r ) dz dr

oo ,h/2 h/2 -
= irp wij) — irp UTj) dz - irp ijrw dz dr

;0 4=-h/2 ;-h/2 r=0 ; ;

= - ir p ty T by Lamb art. 162-1 (ref . 66)

oo

= -| T2 Z Fn ( 2 - 2 2 )

To determine the kinetic energy generated by the rotor, we

compute the work done by the rotor to form one vortex ring.

Each blade moves through azimuth $ = 2ir/N to form one vortex.

Thus the total work done to produce one ring is :

,2ir/N ,R0
Ki =N| J p U r - ^ r d < J ) d r (2-23)
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For uniform downwash w and circulation r,

R0
K± = p F w ( r 2ir dr = irpwF R2 - (2-24)

Here, w is the downwash on the rotor plane. Since w is doubled

in the far wake,

F = 2 w h ' - (2-25)

ir T2R2
Thus, Ki = -| - g — - - (2-26)

, where h is the vortex spacing in the far wake.

To determine FQ , we use the kinetic energy given by Lamb

art. 163-6 due to a vortex ring at z = 0.

7.,

Fo = Ro c *>» -- 3 — (2'28)

, where e is the radius of the vortex core and RQ is the

radius of the ring vortex on the plane of rotor. Equating

equations (2-22) and (2-26) with the use of equation (2-28) gives

_

r t » 0

R R
jp = 8 e x p C G ( - ^ ) I'^jT11 (2-29)
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1, where 0=5— E F (RA , 0) , 2e = d
R0 1 n °

-£ = 16 -g. expC G(̂ ) - -Z - „ -g D - (2-30)

In equation (2-30), d is the diameter of the ring vortex and

dQ /h is the diameter to spacing ratio for the immediate vortex

ring behind the blade. For the first vortex ring

= * 2¥ Fn ' F0 = R1C *n ITS' - ? 3 — <2-31)

For the second vortex ring

¥ Fn ' F0 ' R2 C*n -T7R ~ I 3 — (2'32)

Likewise for the first vortex ring

G, = K E F^CR, ,0) + ̂  F, (R, ,0) - (2-33)
JL X\-j -| n J. K-, — J. JL

and for the second vortex ring

-2

G0 = = E F^ (R0,0) + 5 E F (R,,0) - (2-34)
^ K2 1 n 2 K2 -1 n *

In general, for the ith vortex ring

dj RJ p 7 ^n ^n
-^ = 16 -± exp C G. (g) - | - ir -2 g£ 3 — (2-35)

«, -i
,where G. = £ Z F^ (R. ,0) -»- 5- E Fw (R,. ,0) (2-36)i K. i n i K. i n i



From equation (2-35) the core sizes of ring vortices are

computed using the free wake model in Ref.(7) and semi-rigid

wake model. They are shown in fig.s (2-6) and (2-7). In

the far wake the vortex core size approached that of Landahl

(ref. 3). As the ring vortex moves away from the rotor,

kinetic energy propagates outside the core due to the

interactions between ring vortices and hence the core size

grow. The core size grows to the value given by Landahl

which is the possible maximum. The free wake model gives

the smaller core size than the semi-rigid wake because the

former contains the energy in smaller spacing than the

latter. The bursting of the core will give larger core size

than the Rankine core due to the conversion of kinetic

energy into possible turbulent energy.



2.5 LIFTING LINE VS LIFTING SURFACE

Lifting line theory is based on Kutta-Joukowski law

which is the relation between lift and circulation. The

effective angle of attack can Jbe defined when the trailing

and shed vortices are trailed from the trailing edge of

wing, blade, or airfoil. That is, lifting line theory is

valid when there is no seperation from the side or leading

edge of a lifting body. The free wake lifting line couples

the exact relation between lift and circulation with the

nonlinear motion of the vortices trailed from the trailing

edge. Free wake lifting line theory gives the far field

solution of Euler equation. Hence this solution can be used

for the calculation of the pressure distribution around the

blade, that is, for the near field solution. The near field

can be obtained by lifting body theory, Euler or potential

equation for inviscid flow and lifting body theory coupled

with boundary layer calculation or Navier-Stokes equation

for viscous flow. For low aspect ratio wings the vortices

are trailed from the side or leading edge. In this case

lifting surface theory uses the flow tangency condition on

the surface with the free vortices from the side or leading

edge.

Lifting line theory can not model the seperated

vortices over the wing. But the lift used in lifting line



theory includes the leading edge suction and thickness

effect, in the lift. Lifting surface can not model the

singularity on the leading edge or the leading edge suction.

But the pressure distribution around the wing can be

obtained by the lifting surface theory. The separated

vortex can be placed on the surface for lifting surface

theory. For the performance analysis of the rotor blades

lifting line theory is better than lifting surface theory

when there is no leading edge or side edge seperation of any

importance. For the close encounter of the blade with the

strong tip vortex the effective angle of attack for the lift

calculation may not be valid. In present study lifting

line, surface, and body theories were used. The lifting

line solution was in better agreement with lifting body

solution than lifting surface solution. In the comparison

the distance between the blade and tip vortex was about 5 %

of the blade radius. Lifting line appears to be better than

lifting surface for the overall performance prediction of

the rotor because of the use of the exact lift-circulation

relationship of Kutta-Joukowski.



Table 1, Comparison of 3-D momentum theory and Free wake-theory,

... .with 10 snanwise division,

3-D MOMENTUM THEORY . . '

NO. OF BLADES = 2 SOLIDITY =0.0382

CT =0.00408 CP =0.000279 FM =0.660 CT/CP =14.61

CTT =0.00400 CPI =0.000190

CVT1(LOCAL) =0.00050 CVT2(GLOBAL) =0.00500

CTR =0.00408 CPR =0.000281

ETA
.150
.250
.350
.450
.600
.750
.825
.875
.925
.975
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB

=
a
a

a

a

a

s

a

a

=

s

<±
a

K!

a

a

a

-
a

0K

a

et

=

a

9B

a

3

a

a

ss

ex

ss

=

a

a

a

IB

a

a

CHORD
.0600
.0600
.0600
.0600
.0600
.0600
.0600
.0600
.0600
.0600
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KPT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT

THETA
0.1713E+02
0.1591E+02
0. 1469E+02
0.1347E+02
0.1163E+02
0.9800E+01
0.8883E+01
0.8272E+01
0.7661E+01
0.7050E+01
a
a
a

a

a

a

a

.

a

-.

.

m

.

-m

=

m

«

n
_

=

a

B

«

_

^
n

B

»

^
0

a

m

m

>.

.

«

•

1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

RES.
RES.
RES.
RES.
RES.
RES.
RES.
RES.
RES.
RES.
RES.
RES.
RES.
RES.
RES.
RES.
RES.
RES.
RES.
RES.
RES.
RES.
RES.
RES.
RES.
RES.
RES.
RES.
RES.
RES.
RES.
RES.
RES.
RES.
RES.
RES.
RES.
RES.
RES.

a

«

a>

r.

a

a

a

ce

-IB

„

_

_

.

t>

m,

m

m

m

m

•

a

a

a

a

a

a

t*

a

a

a

a

a

a

a

a

a

a

a

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0
0
0
0
0
0
.0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
e
0
0
0
0
0
e
e
0
0
0

ALPHA WLA UT CL GAM
7566E+01 -0.2448E-01 0.1520E+00 0.8453E+00 0.3854E-02
8275E+01 -0.3281E-01 0.2521E+00 0.9064E+00 0.6857E-02
8277E+01 -0.3872E-01 0.3521E+00 0.9001E+00 0.9509E-02
7947E+01 -0.4297E-01 0.4520E+00 0.8611E+00 0.1168E-01
7124E+81 -0.4693E-01 0.6018E+00 0.7696E+00 0.1390E-01
6081E+01 -0.4845E-01 0.7516E+00 0.6560E+00 0.1479E-01
5511E+01 -0.4836E-01 0.8264E+00 0.5941E400 0.1473E-01
5118E+01 -0.4799E-01 0.8763E+00 0.5516E+00 0.1450E-01
4717E+01 -0.4737E-01 0.9262E+00 0.5083E+00 0.1412E-01
4310E+01 -0.4648E-01 0.9761E+00 0.4643E+00 0.1360E-01
.2487E-02
. 6850 E-03
.1086E-03
. 1 1 56E-03
.1097E-03
.1103E-03
.1099E-03
.1090E-03
. 1077E-03
.9794E-04
. 1010E-03
. 1004E-03
.9947E-04
.9824E-04
.9674E-04
.9583E-04
.9693E-04
.9782E-64
.9848E-04
.9899E-04 .
.9932E-04
.9945E-04
.9944E-04
-9928E-04
.9893E-04
.9851E-04
.9790E-04
.9722E-04
.9633E-04
.9531E-04
.9431E-04
.9301E-04
.9176E-04
.9033E-04
.8866E-04
.8727E-04
.8539E-04
.8348E-04
.8202E-04



Tab.le 1, -continued,
NO. OF BLADES - 2 SOLIDITY =0.0382

CT =0.00397 CP =0.000276 FM =0.639 CT/CP =14.35

CTT =0.00400 CPI =0.000188

CVT1(LOCAL) =0.00050 CVT2(GLOBAL) =0.00500

CTR =0.00397 CPR =0.000278

ETA
.150
.250
.350
.450
.600
.750
.825
.875
.925
.975

CHORD
.0600
.0600
.0600
.0600
.0600
.0600
.0600
.0600
.0600
.0600

0
0
0
0
0
0
0
0
0
0

THETA
. 1713E+02
. 1591E+02
. 1469E+02
. 1347E+02
. 1163E+02
.9800E+01
.8883E+01
.8272E+01
.7661E+01
.7050E+01

ALPHA
0.8377E+01
0.9175E+01
0.8859E+01
0.7887E+01
0.6112E+01
0.5192E+01
0.4930E+01
0.5203E+01
0.5840E+01
0.4858E+01

-0
-0
-0
-0
-0
-0
-0
-0
-0
-0

WLA
.2229E-01
.2882E-01
.3514E-01
.4345E-01
.5760E-01
.6014E-01
.5675E-01
.4668E-01
.2922E-01
.3714E-01

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

UT
1516E+00
2517E+00
35 18 E+00
4521 E+00
6028E+00
7524E+00
8269E+00
87 62 E+00
9255E+00
9757E+00

CL
0.9310E+00
0.1003E+01
0.9616E+00
0.8519E+00
0.6590E+00
0.5607E+00
0.5327E+00
0.5608E-t-00
0.6259 E+00
0.5217E+00

GAM
0
0
0
0
0
0
0
0
0
0

.4236E-02

.7570E-02

. 1015E-01

. 1155E-01

. 1192E-01

. 1266E-01

. 1322E-01

. 1474E-01

. 1738E-01

. 1527E-01

ETA • = normalized radius ( = n)
CHORD. = chord width { = C)

THETA = blade pitch angle C =6 )
ALPHA = angle of attack in degrees ( =CX )
WLA = normalized downwash ( = A)
UT = normalized total velocity with respect to blade t =
CL = lift coefficient ( = C ) 2
GAM = normalized bound circulation (=



Table 2, Comparison of 3-D momentum theory and Free wake Theory
with .15 spanwise division,

3-D MOMENTUM THEORY

' NO. OF BLADES - 2 SOLIDITY =0.0382

CT =e.ee4ce CP =0.eee279 FM -=0.660 CT/CP »u.62

CTT -0.00400 CPI =0.000190

CVT1(LOCAL) -0.00050 CVT2(CLOBAL) =0.00500

CTR =0.00408 CPR =0.000280

ETA
.150
.225
.275
.350
.500
.670
.760
.800
.840
.880
.910
.930
.950
.970
.990
NB =
NB =
NB =
NB -
NB =
NB -
NB =
NB -
NB =
NB -
NB -
NB -
NB -
NB =
NB »
NB =
NB -
NB *>
NB =
NB =
NB
NB
NB
NS
NB
NB
NB
NB
NB
NB
NB
NB

-a

-•

—
K*

t>

-

-Kt

=

"

CHORD
.0600
.0600
.0600
.0600
.0600
.0600
.0600
.0600
.0600
.0600
.0600
.0600
.0600
.0600
.0600
2 KIT
2 KIT
2 KIT
2 KIT
2 KIT
2 KIT
2 KIT
2 KIT
2 KIT
2 KIT
2 KIT
2 KIT
2 KIT
2 KIT
2 KIT
2 KIT
2 KIT
2 KIT
2 KIT
2 KIT
2
2
2
2
2
2
2
2
2
2
2
2

KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT
KIT

THETA
0.1713E+02
0. 1622E+02
0.1561E+02
0. 1469E+02
0. 1286E+02
0.1078E+02
0.9678E+01
0.9189E401
0.8700E+01
0.8211E-I-01
0.7844E+01
0.7600E+01
0.7356E+01
0.7111E+01
0.6867E+01

- ' 1 RES. -
- 2 RES. -
= 3 RES. -
- 4 RES. =
- 5 RES. =
- 6 RES. -
- 7 RES. -
- 8 RES. -
- 9 RES. -
=10 RES. -
= 11 RES. =
- 12 RES, .=
= 13 RES. -
- 14 RES. -
=15 RES. -
=16 RES. -
= 17 RES. -
-18 RES. -
=19 RES. -
- 20 RES. »
0

-d
=
a

-=

-«

=

n

-

21
22
23
24
25
26
27
28
29
30
31
32

RES.
RES.
RES.
RES.
RES.
RES.
RES.
RES.
RES.
RES.
RES.
RES.

m

m

>

-a

-

-
-.

B*

a

«

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.
0.

0.

0.

0.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0
0
0
0
0
0
0

0
0
0
e

ALPHA WLA UT CL GAM
7566E+01 -0.2448E-01 0.1520E+00 0.8453E+00 0.3854E-02
8189E+01 -0.3100E-01 0.2271E+00 0.8998E+00 0.6131E-02
8320E+01 -0.3448E-01 0.2772E+00 0.9092E-t-00 0.7560E-02
8277E+01 -0.3872E-01 0.3521E+00 0.9081E+00 0.9509E-02
7707E+01 -0.4458E-01 0.5020E+00 0.8340E+00 0.1256E-01
6657E+01 -0.4792E-01 0.6717E+00 0.7186E+00 0.1448E-01
6007E+01 -0.4847E-01 0.7615E+00 0.6479E+00 0.1480E-01
5704E+01 -0.4845E-01 0.8C15E+00 0.6150E-t-C0 0.1479E-01
5394E+01 -0.4828E-01 0.8414E+00' 0.5815E+00 0.1468E-01
5078E+01 -0.4794E-01 0.8813E+00 0.5473E+00 0.1447E-01
4838E+01 -0.4758E-01 0.9112E+00 0.5214E+00 0.1425E-01
4676E+01 -0.4729E-01 0.9312E+00 0.5039E+00 0.1408E-01
4514E+01 -0.4696E-01 0.9512E+00 0.4864E-I-00 0.1388E-01
4351E+01 -0.4658E-01 0.9711E+00 0.4687E+00 0.1366E-01
4186E+01 -0.4616E-01 0.9911E+00 0.4510E+00 0.1341E-01
.4570E-02
.6544E-03
.8440E-03
.1935E-03
.1094E-03
.1090E-03
.1084E-03
.1076E-03
.1065E-03"
.105VE-03
.1003E-03
.1006E-03
.9953E-04
.9831E-04
.9686E-04
. 9604E-04
. 9538E-04
.9463E-04
.9361E-04
. 9266E-04
.9134E-04
.9015E-04
.8873E-04
.8718E-04
.8572E-04
.8396E-04
.8235E-04
.8038E-04
.7878E-04
.7666E-04
.7478E-04
.7271E-04 /.



Table 2, -continued,

ORIGINAL P£r- r

POOR QUAUT?

NO. OF BLADES - 2 SOLIDITY =0.0382

CT =0.00394 CP =0.000277 FM«=0.630 CT/CP=14.19

CTT =0.00400 CPI =0.000190

CVT1(LOCAL) -0.00050 CVT2(GLOBAL) =0.00500

CTR =0.00394 CPR =0.000279

ETA
.150
.225
.275
.350
.500
.670
.760
.800
.840
.880
.910
.930
.950
.970
.990

CHORD
.0600
.0600
.0600
.0600
.0600
.0600
.0600
.0600
.0600
.8600
.6600
.0600
.0600
.0600
.0600

THETA
0.1713E+02
0.1622E+02

.1561E+02

.1469E+02

.12B6E+02

.1078E+02
0.967BE+01
0.9189E+01
0.8700E+01
0.8211E+01
0.7844E+01
0.7600E+01
C.7356E+01
0.7111E-t-01
0.6867E+01

ALPHA
0.8372E+01
0.9085E+01
0.9322E+01
0.8949E+01
0.7216E+01
0.5658E+01
0.5181EH-01
0.5040E+01
0.5002E-I-01
0.5351E+01
0.5699E+01
0.5703E+01
0.5399E401
0.4777E+01
0.3608E+01

WLA
-0.2230E-01
-0.2742E-01
-0.2961E-01
-0.3458E-01
-0.4890E-01
-0.5968E-01
-0.5948E-01
-0.5776E-01
-0.5404E-01
-0.4374E-01
-0.3389E-01
-0.3062E-01
-0.3227E-01
-0.3936E-01
-0.5618E-01

UT
0.1516E+00
0.2267E-f00
0.2766E+00
0.3517E+00
0.5024E+00
0.6727E+00
0.7623E+00
0.8021E+00
0.8417E+00
0.8811E+00
0.9106E-I-00
0.9305E+00
0.9505E+00
0.9708E+00
0.9916E+00

CL
0.9306E+00
0.9954E+00
0.1016E+01
0.9710E+00
0.7776E-I-00
0.6107E+00
0.5595E+00
0.5446E+00
0.5405E+00
0.5760E+00
0.6114E-H00
0.6115E+00
0.5793E-H00
0.5129E+00
0.3876E+00

GAM
0.4234E-02
0.6769E-02
.8433E-02
.1025E-01
.1172E-01
, 1232E-01
.1280E-01
,1310E-01
.1365E-01
.1522E-01
, 1670E-01
.1707E-01
.1652E-01
.1494E-01

0.
0.
e.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.1!53E-ei



a)

flflW
b)

N

X

c)

fig, 2-1, Geometry of model using vortex rings and cylinders to represent
the wake,
a) Side view of rotor wake model showing intermediate and far

wakes formed from vortex spiral - 2 blades, Tip vortex only
shown,
_ Blade One . __ Blade two

B) Plan vieM showing near wake
.C) Formation of intermediate wake
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Figure 2-2, Comparison of Bound Circulations from Momentum Theory
and Free Wake Lifting Line Theory,
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CHAPTER 3

SURFACE SINGULARITY METHODS FOR COMPUTING THE POTENTIAL

FLOW OF HOVERING ROTOR WITH FREE WAKE GEOMETRY

In this chapter lifting line, lifting surface, and

lifting body theories are applied to the aerodynamic

analysis of hovering helicopter rotor with the calculation

of free wake geometries. For lifting line theory the

relationship—of Kutta-Joukowski between bound circulation

and downwash is solved iteratively untill the wake geometry

is converged. The spiral wake of hovering rotor is

represented by vortex rings and cylinders. Implicit-type

wake geometry calculation is used to enhance the stability

and convergence of wake geometry calculation. The radial

and axial movement of intermediate ring vortices are

computed exactly by integrating the downwash velocities on

them directly below the blade while near wake is fixed on

the plane of rotation and far wake of vortex cylinders is

the continuation of intermediate wake.

For lifting surface and lifting body calculation

intermediate and far wakes are treated as lifting line

problem and the influence of near wake is treated as lifting

surface or lifting body problems. For lifting surface

solution vortex lattice method is used and for lifting body
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solution the superposition method of sources and vortex

sheets on the body surface of Hess and Smith (ref. 34) are

applied. This means that the influence of wakes are

computed on a quarter chord position of the blade for

lifting line theory and on control point of each body

surface element for lifting surface or body theory. In the

analysis the rotor used by Johnson (ref. 35) is used for

the comparison with Miller's results (ref. 7). Also, the

wing of Boeing TR 17 of aspect ratio 2 is used to compare

with the results in Ref. (33).

In section (3.1) vortex lattice method and vortex panel

method are formulated for lifting surface solution. Also,

the pressure coefficient formula for lifting surface theory

is presented. In section (3.2) the mathematical basis of

lifting surface and lifting body theory are formulated by

applying Green's second identity to flow field. The matrix

equations for unknown surface total potentials or

perturbation potentials are derived which are the strengths

of doublets on body surface. In section (3.3) lifting body

theory of Hess and Smith using source and vortex are derived

into a matrix equation which is the relationship between

boundary conditions, Kutta conditions, and unknown

strengths. The matrix equation is formulated from a system

of linear equations obtained from descretizing Green's

integral solution or from the superposition of surface
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singularities. In section (3.4) the technique of free wake

geometry calculation are discussed. In section (3.5) the

engineering calcualtion of skin friction drag is derived for

laminar or turbulent boundary layers of airfoil.

Miller, R.H. (ref. 7) used the simplified free wake

model of infinite line vortices or ring vortices below the

rotor to replace helical vortices. In both cases the

semi-infinite near wake was attached to the blade on the

plane of rotation for the rotor of two blades. He had three

line or ring vortices in intermediate wake and three

semi-infinite vortex sheets or vortex cylinders in far wake

and used the Betz roll-up for line vortices. These two or

three dimensional simplified free wake model predicted tip

vortex positions in close agreement with experiments.

Miller, R.H. (ref. 8) investigated the effect of bound

circulation and the extent of intermediate wake on vortex

position. He found that the wake contracted, then expanded,

and became wavy when far wake was eliminated. Simplified

models was in agreement with the more complete solutions.

Miller, R.H. (ref. 9) showed that ideal figure of merit

decreased when vortex core size was decreased, or when wake

rotation was included, or when number of spirals in the far

wake was increased. Miller, R.H. (ref. 10) suggested the

simplified approach for the first time in which the spiral

wake was replaced by line vortices or ring vortices which



were shown to have a closed form solution for the induced

velocities at any location.

Brower, H.fref. 12) compared lifting surface (vortex

Lattice) and lifting line solutions for the blade

interactions with curved or straight vortex lines. He found

that lifting surface solution predicted lower bound

circulation than lifting line solution. Brower, M. (ref.

13) computed the bound circulation of hovering helicopter

rotor using lifting line theory and free wake model of

filament vortices. The wake was divided into near wake of

70 degrees, intermediate wake of three filament vortices

over 740 degrees, far wake of three semi-infinite vortex

cylinders. His predicted thrust coefficients were a little

lower than the experimental results. The calculated wake

contraction was less than the experiments, which he

suggested was due to inner line vortices. Tanuwidjaja, A.

(ref. 14) investigated the effects of free wake models on

hovering performance prediction. He used vortex sheets in

near and intermediate wake regions. He found that the free

wake model which used vortex sheets in near wake and four

line vortices in intermediate wake was in better agreement

with experiments than one which used vortex sheets in near

and intermediate wakes. Also, he neglected the distortion

of inner sheets in near wake of that model.

Kocurek,J.D. et. al. (ref. 15) computed the



hovering performance with circulation coupled prescribed

wake lifting surface theory. The axial and radial settling

rates of tip and inner vortices were expressed as a function

of the tip vortex strength and the number of blades. They

also computed lifting line and lifting surface solution and

found that leading edge suction obtained by lifting surface

solution was higher than one obtained by lifting line

solution near the blade tip region. Lifting surface theory

with higher leading edge suction underpredicted the lift

coefficient compared to lifting line theory. Shenoy, K.R.

and Gray, R.B. (ref. 16) computed the surface vorticity

distribution of thick bladed hovering rotors. They used

lifting line theory with a prescribed wake to calculate the

effective angle of attack. From starting the

two-dimensional airfoil surface vorticity at the effective

angle of attack they solved the three dimensional potential

flow by iterating until the surface vorticity strength

became the total surface vorticity due to blade surface

vorticity, prescribed wake vortices, and free stream.

Djojodihardjo, R.H. and Widnall, S.E. (ref. 17)

developed a numerical method using only doublet (or

vorticity) distribution for the calculation of unsteady

potential flow. They used a quadratic distribution of

doublet only along the chord and computed two kinds of

influence coefficients for the surface velocity and
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potential. Although they gave results about the impulsive

starting of airfoil and wings, they did not give formulas

for two-dimensional problem. Preuss, R.D. et. al. (ref.

18) developed the potential flow solution for wind turbines

and hovering helicopter rotors using Green's function

method. For lifting surface problem the unknowns were

potential discontinuities and for a lifting body problem the

unknowns were surface potential strengths. They found that

lifting surface solution underpredicted the blade lift,

compared to lifting body solution and that 3 chordwise and

10 spanwise lifting surface elements were enough to achieve

the required accuracy. For the lifting body configuration

solution the strengths of surface sources were known and the

strengths of surface doublets, that is, the perturbation

potential strengths were unknowns to be determined by the

normal flow boundary condition. They found that the

airloads acting on wind turbine blades due to shear wind was

oscillatory in the same form as the shear wind. Clark, D.R.

(ref.19) reviewed the previous potential flow panel code

with seperated region modelled by constant vorticity panel.

A bluff body was modelled by distribution of sources and

linear vorticity and the body surface vorticity was zero

after the seperation line with all vorticity going into the

flow field.

Johansson, B.C. (ref.20) showed that the effect of
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compressibility for a helicopter rotor in vertical climb,

hovering, and for a propeller was a Prandtl-Glauert

correction on a lift curve slope with the effective angle of

attack computed by the compressible flow downwash for a

lifting line theory. Johnson, W.(ref. 21) derived the

linearized equation for the acceleration potential in a

coordinate where an oblique convecting vortex interaction

with an infinite wing appeared as steady flow. As a

function of free stream Mach number and the skew angle of

the convecting line vortex he derived elliptic kernal which

related the acceleration to the downwash. He calculated

peak section lift for incompressible flow as a function of

vortex height from an infinite wing. Bristow, D.R. et.

al. (ref.22) combined 3-D surface panel method with

multiple geometry perturbations to compute the potential

flow for a series of different geometries. Their surface

panel method used the constant source of known strength and

a quadratic doublet on each panel with zero interior

perturbation potential condition. From the linear

relationship between the doublet(potential) strength and the

boundary condition on each control point they obtained the

derivative matrix of the surface potential with respect to

geometry perturbations.

Tai,T.C. et. al. (ref.25) computed the optimum round

trailing edge geometry for the highest lift of circulation
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control airfoils. In their analysis the potential flow was

computed by surface vortex panel method with the Kutta

condition of specified circulation due to blowing. Three

baseline geometries of round trailing edge were used as

design variables for the search of the highest lift. The

viscous effect of blowing formed a separation bubble at the

trailing edge. At the upper and lower ends of the

separation bubble the zero pressure difference determined

the circulation around the airfoil. But the predicted lift

was dependent on panel arrangements and hence the

circulation was not uniquely determined. It is unlikely

that circulation control airfoils are as effective as

airfoils of chord change even though the lift to drag ratio

is high due to the reduction in drag by jet flow. Mcveigh,

M.A. et. al. (ref.23) showed that the tapered tip had the

highest figure of merit for hovering performance among

tested tip shapes. .They found that low solidity rotor had

the higher figure of merit than the high solidity, one for

the same thrust coefficient and the same tip speed. But as

the tip speed is decreased, it is expected that the high

solidity rotor has a higher induced power, hence a higher

figure of merit than a low solidity one.

Roberts,T.W. and Murman,E.M. (ref. 24) derived the

potential finite difference equation for axisymmetric flow

beneath hovering rotor by using mass conservation with
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potential jumps due to vortex branch cuts. By subtracting

the local potential due to a ring vortex they computed the

velocity induced on that ring vortex due to all other

vortices and then they added the self induced velocity to

get the convecting velocity. Therefore the convecting

velocity of a ring vortex was not dependent on the grid

size. They found that relatively a few vortices were

required to adequately determine the downwash on the rotor.

Liu, et. al. (ref. 26) solved the vorticity-stream

function equation in cylindrical coordinate, while

neglecting circumferential variations, for the vortical flow

beneath the rotor plane. They found that the roll-up and

inboard movement of vorticity occured very rapidly and that

the maximum vorticity decayed to 0.8 from 1.0 after 180

degree rotation.



3.1 VORTEX LATTICE AND VORTEX PANEL

LIFTING SURFACE THEORY

Vortex lattice method places the concentrated vortex on

a quarter point of each panel and the control point on a

three quarter point of each panel. This arrangement of

vortex and control points will give the exact value of the

overall circulation as follows.

t
V

2H (Xv-

= 2nVooot(xc - xv) (3-1)

The circulation distribution of the plate airfoil at angle
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of attack <x is y(x).

(x) = 2V oiJc - x
°° 1̂ X

The overall circulation is F.

(3-2)

F = V aUc
00

(3-3)

By equating equations (3-1) and (3-3) we obtain the vortex

position to give the same circulation for y = constant panel

as flat plate.

xc - xv=
c
2 (3-4)

In ref.(36) it was pointed out that vortex lattice method

underestimated the strength of vortex near the leading edge

compared to equation (3-2). Therefore,\ let us consider the vortex

panel method. Insted of concentrated vortex, we distribute

a constant vortex sheet.

V
oo

y
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2nj
jy.
- x )dx = - V -n = -

00

- fc
x - c

•y In
c - x

= -V <x2ir
oo

-V a 2 IT
oo

In
C - X

(3-5)

c = r = -
2ir V a c

OO

,c - x
InHe)

(3-6)

By equating equations (3-3) and (3-6) we obtain

c = 0.8808 c (3-7)

The vortex sheet strength predicted by vortex panel method

should represent the strength to match equation (3-2). Hence

(xv) • c = <x
c - x.

c = r (3-8)

By equating equations (3-3) and (3-8) we obtain the

67



vortex position.

xv = 1 + = 0.2884C .(3-9)
7T

The vortex strength predicted by equations (3-1) or (3-6)

should be used as the strength at the location xv = 0.2884c

Then the underestimation of vortex strength by vortex lattice

method is expected to disappear.

The sensitivity of the vortex strength on control point

location for one panel is obtained from equations (1) and

(6).

From equation (1),

§ = Voo" 2 *
c

From equation ( 6 ) ,

dT

dX,,

- 211 V <xC'
oo

V ( C — V ^xc (c xc )
An •

xc ,

2

Vortex lattice method is less sensitive to control point

location than vortex panel method for one panel. But as the

number of panels increases, the vortex panel method is less

sensitive to control point location than vortex lattice

method. Hence ,vortex panel method is expected to give

better results for three dimensional flow, for example, for

hovering rotor, than vortex lattice method. Both method

satisfy the Kutta condition implicitly.

The pressure coefficient, C , is calculated as follows.
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2 22
p -f 0.5 pU =p + O.Spft r

00
(3-10)

il is the rotational speed of the rotor and r is the radius.

On the suction surface U = u 4- 0.5 y and on the pressure

surface U = u - 0 . 5 y - u i s the total tangential velocity

on the surface and y is the local strength of vortex sheet.

2
u

SI (3-11)

where t| is the normalized radius. By integrating the pressure

distribution the normal section force, N , of lifting surface

is calculated as N = Cn
2 2O.Spii r c. Since C0 = a <x, ot, = C /ax J. n

as a first approximation where ot is the angle of attack, a is

the lift curve slope, and C is the lift coefficient.

arc tan

w / (fir) =

= 0 — a from the figure

= tan(0 - ot)

69



X,= T) tan(0 — a, )

By Kutta-Joukowski law normal force N should act perpendicular

to the velocity UT.

N _ Cn

O.SpU2 c 1 + x2

Then the new angle of attack is a, = C. /a. The power coefficient

of rotor is C .
P

C =0.5orf CC sin(0 - <x) -h C, cos(6 - <x) } Ti(r) + X) dr} -(3-12)j. 0 - - , - 2
p j x a

The thrust coefficient of rotor is CT.

CT=0.5a| tC^cosfO - a) - Cdsin(0 - a)}(ri
2 + X2) dr| - (3-13)

Here, a is the solidity and x is the inflow ratio.

Also' Cd = CdQ + C ex2 = 0.014 + 0.5 a2
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3.2 DERIVATION OF METHOD

The second form of Green's theorem is

= f f n. ( 4^7 <f>2- <f>2V 4^ dS (3-14)

where R is the region bounded by the closed surface S and

n is the outward unit normal, cLet us consider the region
v
^_

outside a wing as shown in figure.

= x = 1/r. Then 7 <J> ,=0 in region R andL e t < } > - = < { > a n d

"5 —
and V <J>2=0 except at a point P. \ Let us exclude the point -R.
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from the region R. Then the first integral in equation (3-14)

is zero. At a point P

n . ( <j>? - v<j> ) dS

= lim
r-»o

f ( -£ - -
} r r

|J n. (-<t>vp + p74»dS = -4II<

S

,if p is inside of R.

=0 r if p is outside of R

S =Body surface + Wake = B + W.

On the wake surface W,

ff "*( r
ds =

f i —UdS - f - —'J r 3n J r an dS =

W-

On the wake surface the normal velocity is continuous. Hence,

V
B

( * ~ *)7 •" ds
W

Let v<|>, be the velocity potential inside of the wing.
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0 = (V<t)~ * * > - n ds

B

Adding equations (3-16) and (3-17) we obtain

1 r r ]_ -+
p 4U J j r 1

B

i "^ X J f X ~"^ »«^ / *J 1 O \

B W

If we set 0 = Q, on the body surface, we get potential due

due to source distribution and circulation r = <)> - $0 .XI X

S II ̂  ~ 7*i)̂ ds + 4f
B W

= 'ill! r^3 + ilJĴ -̂"'13 - (3-19)
B W

13 1
Here, a) is tne potential due to a doublet.

• - H • - '

- (3-20).

The velocity due to doublet can be replaced by the velocity

due to vortex. Then the vortex of circulation of r can be

distributed on the -wing surface or on the camber surface.
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If we let 7<f> -n = 7$,'n, then we get the potential due to

doublet distribution only.

Op = SffJJ <* - V^r*'"*3

B

+ df|j (<t)u - V^r''™13 ;< 3-2.1)
W

When the wing has zero thickness, the normal velocity across

the wing is continuous. We get the potential due to doublet only.

From equation (3-16) we can get the expression for the total

potential $.

B

:-).n dS .. (3-22)
4HJ

W

Here <}) is the potential due to the free stream. Let $ be theroo

total potential $. THen V* • n = 0 on body surface.

B

+ 4ffJJ (*u ~ V7(r}-" dS ".(3-23)
W

Let p be the point on the wing surface. Then equation(3-23) becomes



- *p + 2$^ =0-<3-24)
B-p W

For a numerical solution of equation (3-24), we represent the

surface and wake by a number of flat quadrilateral panels and

we assume the singularity distribution is constant over each

panel. Equation (3-24) is applied at a central control point on

the under side of each surface panel.

CSpk - CPk -
 Wpk = - (3-25)

where 6 . is the kronecker delta,pk

Sk

Wpk =C +-2
Sw

W . = 0 for the segments not in contact with the trailing edge.

From equation (3-23) we obtain

B

Since doublet is equivalent to vortex, the surface distribution
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of vortex can replace the doublet distribution. The strength of

vortex is the surface tangential velocity since $ is the

total potential.

When P is the point on the wing surface, equation (3-16)

becomes

B B-p

Iff ,„/!* -*JC. 1
+ 4nJJ (<"u ~ *£ )v(?}-nds - J^p (3-27)

w

Using the same approach as equation (3-25) we obtain

=cv

Cpk = C2l| fe(?

Sw

W =0 for the segments not in contact with the trailing edge,

bpk

In equation (3-24) we set $ =.t>00 + <t>«
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o >-n dS
B-p

= 0

w

$ A . _. / 1 t ~*j ry / •a _ O Q \
— ( P — . / V v — / « n Q o ' 3 &j/

B-p w

= $ + [|0 V ( - ) . n dSoop j j oo r
B-p

The numerical implementation of this equation is

k3 -(3-30)
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3.3 LIFTING BODY THEORY.

Among the various formulations presented in section

(3.2) the method of Hess and Smith in ref.(34) was used in the

lifting body potential flow computation of wings and rotor.

The method of Hess and Smith can he derived from equation

(3-20) as follows. There are N normal flow boundary conditions

to determine N source strengths, a. , for N surface panels of the

lifting body. There are also K Kutta conditions of equal pressure

on lower and upper panels nearest to the trailing edge to

determine K vortex sheet strengths, y. , for K spanwise sections

of the lifting body. The normal velocity at control point i

can be expressed in matrix form.
"w~— • -f '

C Aij ' Aik 3 aj = Cwi} i = i'-'-'N (3-31)

where A.
~ ~\ I fl-ir II ' -f i v

ij

and A.k

The magnitude of ?. is unit for the surface panel S. , increases
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linearly along the side edge of panels according to Helmholtz law,

and stays constant in the wake. The perturbation tangential

velocity at control point i is £ v±^'

C v. } = (3-34)

where (3-35)

Cik 47rJJ dS (3-36)

n. and t. are the normal and tangential unit vectors on

control point i. The Kutta condition gives K additional

equations in addition to N equations given by equation (3-31)

' Ciu,k .
oo 1U

+ ?.•*: (3-37)

Here, i is the control point of the panel touching the

trailing edge.

C(Ciu,j (Ciu,k - CiJl.«" (5
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L e t A = C — C A = C — C

and w. = if • £.. - tf • £. for i = N+1,---,N+K.
1 w IX o° 1U

Then' C A,, , A..,. D |a,| = £ w±} , i =!,.••,N+K —(3-38)

The solution of this matrix equation gives N source and K

vortex strengths. For the rolled-up vortex trailed between

station k and k+p, the strength of this vortex is T^— r^ .

The influence coefficients at control point i due to this

rolled-up vortex is B.. . Then C.fc= Cik + BiJc and C^ k

= C. . - B.. . Equation (3-34) gives the perturbation

tangential velocity at control point i. From Bernoulli's

equation we can determine the pressure distribution.
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3.4 CALCULATION OF ROTOR FREE WAKE GEOMETRY

For rotor performance analysis using lifting line,

lifting surface, and lifting body theories, the wake

geometry is divided into near wake, intermediate wake, and

far wake. The near wake consists of concentrated circular

vortex filaments attached to the blade trailing edge and

spans to the half of the blade spacing from each blade on

the plane of rotation. The number of vortex filaments in

near wake depends on the number of spanwise divisions of the

blade. The intermediate wake usually consists of four ring

vortices in axial direction and three inner ring vortices in

radial direction with the root vortex suppressed. The far

wake consists of semi-infinite vortex cylinders whose number

depends on the inner ring vortices in intermediate wake.

During lifting surface and lifting body representation of

the rotor blade, the blade bound circulation is considered

to be concentrated on a quarter chord line of the blade for

the calculation of free wake geometry. During free wake

geometry computation the near wake is considered to roll-up

instantaneously on the plane of rotation according to the

conservation of linear momentum. The radial positions of

rolled-up vortices are determined as follows.
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( r. - r, ) R = z r^ ar .
3=1 D 3

where R is the radial position of rolled-up vortex, the

strength of the trailing vortex filament, and r the radial
j

coordinate of the trailing vortex filament.

From the root to 15 % radius of the blade span the root

vortex is considered to be formed and then is suppressed.

From 15 % radius to the position of the maximum bound

circulation a second inner vortex is rolled-up. From the

position of the maximum bound circulation to the blade tip

the tip vortex is formed. The rolled-up near wake was used

to compute the induced velocities on the rolled-up near wake

vortex, while the entire near wake was used to compute the

induced velocities on the blade or intermediate wake. The



induced velocities on the blade and beneath each blade are

computed. The average of these two velocities multiplied by

the blade spacing determines the position of intermediate

ring vortex. Since the influence of near wake vortex

filaments is computed only on and beneath the blade,the near

wake is extended to form ring vortices and the half of the

velocity due to ring vortex is the induced velocities on

blade and wake.

On the position, i, of the quarter chord line of the blade,

or intermediate wake the induced velocities are . ( w. k + v.

wn"l"1= Anwi Az
n+1 n

where y .are the strength of bound circulation, A . . and A .
D y1fJ 21r

are the y- and z- direction induced velocities due to all



trailing vortices from bound circulation, j, of unit strength,

i covers all spanwise stations of the blade and all positions

of intermediate vortices. The influence coefficients A • .•

and A . .are computed from the wake geometry of (n)th iteration.

The bound circulation of (n+l)th iteration is computed by

applying the boundary condition of no flow normal to body

for lifting surface and lifting body theory or

Kutta-Joukowski law for lifting line theory. The wake

geometry of (n-i-l)th iteration is computed by intergrating

the downwash on wake positions. When the variation of the

bound circulation is less than 0.5% for all sections

independently, the iteration stops. For the computation of

free wake geometry by lifting line theory the initial wake

geometry is generated from semi-rigid wake model obtained by

local momentum theory. For lifting surface and lifting body

theory the wake geometry starts from the lifting line

results. The influence coefficients on a quarter chord line

due to intermediate and far wakes are taken to be those over

all chordwise panel points. This means that the blade is

treated as lifting line for intermediate and far wakes

during lifting surface and lifting body calculation.



3.5 RESULTS AND DISCUSSION

In this section we discuss lifting tody solution for a

thin airfoil and wings, and lifting line, lifting surface,

and lifting body solutions for! ..the rotor used in Ref. (68) . In
v

figure (3-1) to (3-5) lifting body and Euler solutions for a

thin airfoil of 1% thickness and vortex panel and exact

solutions of a plate are compared. As the thickness

approaches zero, source and sink of the lifting body

solution become of equal strength and approaches doublet.

Figure (3-1) shows that suction side pressure near the

leading edge are overpredicted compared to the exact

solution of figure (3-2) as the thickness approaches zero.

Euler solution of Ref.(32) in figure (3-3) is in good

agreement with figure (3-2). Vortex panel solution in

figure (3-4) is in good agreement with the exact solution in

figure (3-5). Lifting body solutions from figure (3-6) to

figure (3-9) for a rectangular wing of Boeing TR 17 of

aspect ratio =2 demonstrated that they are in good agreement

with the solutions of Ref.(33). In Ref.(33) doublet

distribution on camber surface and source distribution on

body surface were used instead of one vortex and source

distribution on body surface used in the present method.
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Figure (3-10) to (3-13) show lifting body solutions for a

rectangular wing of NACA 0012 of aspect ratio of 6 which are

in close agreement with experiments in Ref.(67). But at the
/ - ' •
wing tip region the rolling-up vortex from the side edge

passes above the wing surface slightly inboard from the tip.

Hence the experimental results are different from the

theoretical results of the fully attached flow near the wing

tip. Figure (3-10) to (3-12) shows that the boundary layer

growth gives higher negative pressure near the wing leading

edge. Figure (3-14) to (3-23) compares lifting surface and

lifting body solutions of NACA 0012 sections for a rotor

used in Ref.(68) with wake geometry computed by free wake

lifting line theory. In all figures thickness give rise to

higher surface velocities compared to surface of zero

thickness and hence lowers the surface pressure. Also,

thickness gives higher leading edge suction and hence

increases the bound circulation. Vortex lattice lifting

surface theory underestimates the leading edge suction,

while lifting body theory using chordwise panels less than

50 panels overestimates the leading edge suction. Figure

(3-24) shows the wake geometry computed by free wake lifting

line, lifting surface, lifting body theories, and one

computed in Ref.(7). Except for the free wake lifting body solution,

wake geometries are in close agreement with each other.

Higher circulation due to thickness and due to the finite
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number of panels was coupled to wake geometry to move ring

vortices further downward for lifting body solution. Bound

circulation distribution are shown in figure (3-25), which

are obtained by lifting line, lifting surface, lifting body

theory with the same wake geometry computed by free wake

lifting line theory. The peak bound circulation due to

lifting body is the highest among the three solutions and

lifting line shows the higher peak circulation than lifting

surface solution. From the figure this difference seems to

be due to the different leading edge suction due to

thickness and due to the finite number of chordwise panels

for the lifting body solution. In figure (3-26) bound

circulation obtained by free wake lifting line and free wake
*

•extended lifting line are in close .agreement except "the peak
t

circulation. Free wake lifting body solution gives much

higher circulation than two other solution partly due to

nonlinear coupling of thickness with free wake geometry.

Figure (3-27) compares the bound circulation obtained in

Ref.(7) with one obtained by the present method and by using

the same geometry used in Ref.(7), and with one obtained by

the present method with free wake geometry. They are in

almost exact agreement. Figure (3-28) shows the effect of

far wake and intermediate wake on bound circulation and

performance coefficients. Far wake has a about 10 % effect

on the performance coefficients and intermediate wake has

'Single panel lifting surface solution (Weissinger)
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very strong influence on the performance of the rotor. When

there is only near wake, the thrust coefficients increases

and the required power coefficients decreases very much.

Figures (3-29) and (3-30) compares the hound circulations

obtained by lifting line, surface, and body theories coupled

with free wake calculations. Lifting body solution gives

about 10 % higher bound circulation due to the thickness

effect coupled with free wake geometry. As the number of

panels used in lifting body solution is extrapolated to an

infinite number, the thickness effect gives about 7 % higher

circulation than lifting line solution which used the lift

curve slope of 0.98*6.283. In Figure (3-31) the induced

drag for the wing of NACA 0012 and aspect ratio =6 converges

as the chordwise number of panels increases to 50. Hence,

the differences between lifting line and lifting body in

figure (3-24) to figure (3-30) will become less than those

shown in figures if the chordwise number of panels becomes

above 50.
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FIGURE 3-3 EULER SOLUTION op THIN AIRFOIL
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CHAPTER 4

NUMERICAL OPTIMIZATION OF HOVERING PERFORMANCE

In this chapter the review of the papers on the

optimization theories and of their applications on the

aerodynamic design of rotor blade and wing are presented.

Theories on the optimization are formulated and these

theories are extended to the numerical solution of nonlinear

simultaneous equations in Appendix C. Finally the results

of the optimization for hovering rotor blade are discussed.

Liebst,B.S. (ref.37) derived the kinetic energy of

wind turbine blade from the coordinate transformation of the

inertial coordinate to the blade coordinate to obtain blade

.velocities during flapping, lagging, and pitching motion.

He obtained the full nonlinear blade equation of motion by

using Lagrange's equation with the system kinetic and

potential energy determined. To obtain the optimum tip

section pitch controller he used the penalty integral which

was the sum of a quadratic in the state and a quadratic in

the control, took the variations of this integral, and

equated all coefficients of variations to be zero for the

global minimum condition. By implementing the pitch control

he decreased the blade bendincr moments and noise, while
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increasing average power output of wind turbine. McCormick,

B.W. (ref. 38) computed the optimum bound circulation

distribution of several swept propellers by applying the

constant pitch condition in the far wake. He found that the

swept propeller has a higher bound circulation than the

straight propeller for the optimum condition of the constant

pitch in the far wake. Chang, L.K. and Sullivan, J.P.

(ref. 39) computed the optimum twist of the several

propellers of given shape using the penalty function with

Davidon-Fletcher-Powell's method for the search direction

and with the extended lifting line theory.; Ashley (ref, 40)

reviewed many papers on aeronautical uses of optimization

such as aerodynamics ,structures, and flight trajectory

optimizations. He mentioned that the use of aerodynamic

optimization was less successful than those of flight

trajectory, or structural optimization.

Murman, E.M. and Chapman, G.T.(ref. 41) mentioned how

to select the objective function, constraint function, and

design variables for aerodynamic design by numerical

optimization. They reviewed many papers on aerodynamic

optimization and cited the CONMIN optimizating algorithm

which was a gradient type constrained minimization

algorithm. Vanderplaats. ,et. al. (ref. 42) considered

the problem of maximizing the lift with a wave drag

constraint at transonic speeds using the combination of
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conjugate gradient direction and feasible direction

algorithm. Peteers, M.F. (ref. 43) considered the problem

of reducing the computation time for the gradient

calculation during optimization. He was able to reduce the

computation time by reducing the size of the computational

domain for aerodynamic analysis during the gradient

calculation. He reduced the computation time by using the

small disturbance potential solver and the above mentioned

method but was not able to do so by the full potential

equation solver for aerofoils. Larson, Greg (ref .44) was

able to reduce the computation time by restricting the

number of aerodynamic analysis iterations per optimization

iteration using a full potential equation solver for

transonic airfoil design. He used an optimizer QNMDIF

developed by Kennelly at NASA Ames which used a quasi-Newton

method for the search direction calculation during a

function minimization.

Miura, H. (ref. 45) reviewed applications of

multivariable search techniques in five categories of

helicopter design problems; conceptual and preliminary

design, rotor system design, airframe structures design, and

flight trajectory planning. Friedmann, P.P. and

Shanthakumaran, P. (ref. 46) applied formal optimization

technique to vibration reduction of helicopter rotor blades

in forward flight. The maximum peak to peak value of the
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oscillatory vertical hub shears or the oscillatory hub

moment due to blade flapwise bending was used as an

objective function. The sequential unconstrained

minimization techniques, based on extended interior penalty

function and a modified Newton method, was used. They found

that the modification of section properties near blade tip

and the addition of nonstructural mass at the elastic axis

resulted in considerable reduction of vibratory hub loads

and blade mass, compared to the blade of uniform properties.

Walsh, J.L., et. al. (ref. 47) applied a formal

optimization for helicopter rotor blade design using,

momentum theory for the hover analysis and rotorcraft flight

simulation computer program, C-81, for forward flight

-analysis. . They combined the analysis programs with CONMIN

optimizer program of ref. (53). The objective function was

the required horsepower for the hover and the constraints

were the drag coefficients and horsepower required during

forward flight and pull-up maneuver. They were able to

obtain the rotor geometry which had the performance as good

as that of heuristic design with ten times shorter time than

the heuristic design. For AH-64 rotor the hover horsepower

was .governed by the horsepower required for forward flight.

For UH-1 helicopter the hover horsepower with the given

design gross weight was governed by the drag coefficients

for the forward flight and the pull-up maneuver. In both
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designs the rotor had 290 RPM.with the blade radius of 24

feet for AH-64 and 324 RPM with the blade radius of 24 feet

for UH-1. Consentino, G.B. and Hoist, T.L. (ref. 48)

combined a transonic wing flow analysis program with a

quasi-Newton unconstrained optimization algorithm, QNMDIF,

for the numerical optimization of transonic wing

configurations. The lift to drag was increased by 27.64 %

for Lockheed C-141B wing and by 85.72 % for Cessna model 650

wing by changing the upper surface wing geometry. At each

spanwise sections of the wing there were three or four

movable points with all. the; rest of the points fixed. Cubic

splines were used through immovable and movable points. The

vertical positions of the movable points at three spanwise

stations became twelve or nine design variables. •

Broyden, C.G. (ref. 49) defined Quasi-Newton method

as methods in which the search direction for minimization

approaches to the direction of Newton method as the minimum

of the function is approached. He proposed several

Quasi-Newton methods which are exact if the Hessian matrix

is symmetric and nonsingular. Fletcher, R. and Reeves,

C.M. (ref. 50) proposed quadratically convergent method

which used only the gradient vectors for the search

direction in contrast to Quasi-Newton method which used the

approximation for the inverse of Hessian matrix at each

search direction calculation. Fletcher, R. and Powell,



M.J.D. .(ref. 51) gave the search direction vector which

was quadratically convergent and approached Newton's method

near the minimum. He used cubic interpolation given by

Davidon to obtain a minimum along the search line. Topping,

B.H.V. and Robinson, D.J. (ref. 54) gave brief

descriptions of three mathematical programing methods for

nonlinear optimization techniques. These are sequential

linear programing (SLP), feasible direction method (FDM),

and sequential unconstrained minimization technique (SUMT).

They applied the above three techniques to the minimization

of portal frame weight and found that FDM was the most

inefficient technique. -
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4.1 Objective Function Formulation And Design Variables

Hovering performance of helicopter rotor can be measured by

the thrust produced from unit horsepower, that is, T/P. Then,

p
T CT
P Cp J1R

Hence, the objective function, F , to be minimized can be set

CT cp
F = =± or F = -=r-

LP CT

When F = Cp /CL, is used, the optimization code produces the

result of negative thrust, that is, downward thrust for some design

variables. When F = - CL, /Cp is used, the optimizer produces

the result of zero power coefficient, that is, zero disk loading.

In both cases, if the design variables are two tip pitch angles

and two tip chords or five tip pitch angles which were the cases

run here, the optimizer produces the minimum of the objective

function, F, with respect to design variables.

When design variables are chosen to give the overall

minimum of F, the negative thrust, or, the zero disk loading is

obtained by the optimizer, depending on F. Hence, the constraint

on the thrust coefficient is needed. With the nonlinear constraint

of fixed thrust coefficient the problem becomes the constrained

optimization. The problem can be stated as follows..

Find the minimum of F(X. )
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,where X. , i =1, ••• N ; design variables

X .„< X . < X . ; side constraints

and h , (X .) = 0 ; k nonlinear equality constraints.

The constrained optimization can be converted into a unconstrained j

optimization using the penalty function method. The ordinary

quadratic penalty function P (X. ) is given by

r * /v i i2L n. { A . ) j
J. p K.= JL k 1

Then a new objective function, $ (X.), is

« (Xj) = F (X±) + P (X̂ )

* (y r ) = r jr + r ir - r >i P P T p TT T

,where C^, is the given thrust coefficient, Cm is the current

thrust coefficient, and r is the penalty parameter, r is

determined by the requirement that F (X.) and P (Xi) should

be the same order of magnitude. For example, if C /Cm is

0 (ICT1) and (Cmm - Cm ) is 0 (10~
3), then r is 0 (105).

The various formulations of the penalty function

are given in Ref.(52). If we use a small penalty parameter,

Cp /Cm is minimized while the equality constraint of

CT = Cmm is violated. If we use a large penalty parameter,
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C /C_ goes to a suboptimal value while the constraint

is satisfied. Hence, we vary r during the optimization from a

small value to a large value. With the variable penalty parameter

this approach is called the sequential unconstrained minimization

technique (SUMT). During the initial run of the optimizing program

r is fixed, that is, r = rQ = 10000. or 100000. Then, r is varied,

that is, r , = Y ** and 7 = 1.3 where p is the iteration count.

The first category of design variables considered are pitch

angle ,or chord width, or both at each spanwise station. With

ten divisions of the blade span there are ten pitch angles as

design variables for the given chord or ten chord widths as

design variables for the given pitch distribution. From the tip

section to any specified station of the blade, pitch angles

and chord widths are design variables.

(1) X..̂  = C± for i = 1, • • •, N

(2) X..̂  = 9..̂  for i = 1, •• • , N

(3) X± = C± for i = 1, • • •, N/2

Xi = 9i for i = N/2 +1' '"' N

For a second category of design variables a double twisted

and tapered blade was chosen for the optimization with 5 design

variables. For this blade the initial blade geometry is as follows.

(4) X-L = AO-j^ = 0.25 ; root twist.

X2 = A62 = °'15 ' tip twist-
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X = r\ . = 0.75 ; position of taper and double twist.
3 twi s t

X = C . = 0.0729 ; root chord.4 root

X5 = Ctip' Croot ; taper rati°'

. INT

Definition of Design Variables for Category 2

Then the blade pitch and chord distribution of the second try

are obtained as follows.

For n < , C =

9 = X
(X -

X

For > x3 , c = x4 { x5 4- - n
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- X3) 2

The side constraints are

X-ĵ  ,X2 ,X4 ,X5 > 0 and 1.0 > X3 > 0.1

Here C and 9 are each the chord and the pitch angles and n. is

the normalized radius.

Then, for a third design problem, three set of design

variables are used with the initial geometry of rotor of Ref.(6B).

First the collective pitch and the straight twist are used

as design variables. Second the collective pitch, straight

twist, taper ratio, and the position of the taper are used

as four design variables. Third the collective pitch, tip

twist, root twist, taper ratio, and the position of taper

and double twist are used as five design variables.

These are summarized as follows.

(5) .X1= 6 ; collective pitch.

X_ = A9 ; straight twist.

(6) X1 = 9 ; collective pitch.

X- = A8 ; straight twist.

X3 = "n^aoer' P
os*tion °f taper.

X4 = Ctip /Croot ; taper rati0'

(7) X1 = 8 ; collective pitch.

X2= A91 ; tip twist.
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X-, = TV ;• position of taper and twist,3 taper

X. = A92 ; root twist.

X5 ' CtiP
/Croot '• taper ratio.

(8) X, to X5 are the same as the case (7).

Xc = root chord
b

The side, constraints are same as the case (4).

X

X.

Definition of Design Variables for Category 3
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4.2 Search Direction Calculation Using Quasi Newton

or Conjugate Gradient Method

The search direction vector of a quasi^Newton method is

given in Ref.(49). We define A as a Hessian, matrix of the

objective function F. Then A is given as follows.

A = 32F 32F

32F 32F

We define G as the gradient vector of the objective function

and S as the search direction vector for the minimization.

S =' - A G ; Newton method.

But A~ . is approximated in the quasi-Newton method as H and is

given .in Ref. (51) as follows. In the following P is the

iteration count. . .

- l a ,
S = - A G = - H G

= H

,where ap ><ap|

<ap|yp >

*p - -HP|yP ><yp| HP

<7PI Hp |yp >
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,|ap > = |XP+1> - |XP > = <xp|SP

and . |yp > = |Gp+!> - |GP > .

|CTP > is a vector while <ap| is the transpose of |ap >.

QNMDIF , which is used for the optimization, is a parameter

optimizing program with complementary Davidon-Fletcher -Powell update.

The updating formulas are given for the approximated Hessian

matrix or for the inverse of the Hessian matrix in Ref. (4.4).

The method of conjugate gradients is given in Ref. (50) as

follows. . .

Sp+1 = -Gp+1+ iSllllf S*.'
|GP I2

xp+i.= xp + (x sp :
- ' " p p

<x is chosen such that F(X + <x S ) gives its minimum

with respect to positive ot

The momentum theory gives the uniform downwash to be

the optimum condition for the minimum induced power. The

constant downwash can be obtained with the free wake

lifting line theory by varying the chord or pitch as follows,

The circulation is related to the pitch and the downwash.

F ='ir C fl. r < 0 +

roPt
 = " c «« n ( 0 + -
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d-e - + -a* . .0

d© = _ _1 .
dx T|

Then, eP+1= 0P + -£f <xopt - xP>

From the momentum theory, x
ODt

 = * CT /2

ropt = TT .cflR-n ( 0opt

dC ( 0opt

dC.
di . 1 %t

dC . nor —rr J , _, = - C
n opt+ Xopt

Then

\^ — w „. >-\ t^ Vt+

To get a uniform downwash ©p or c" is updated until

xp becomes X . .opt • •
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4.3 One Dimensional Line Search To Find A Minimum.

Line search is to find a which minimizes the value of

objective function, F (Xp + a Sp ), with respect to positive

value of a for the fixed direction of the descent S.

In QNMDIF the line search procedure is to fit a parabolic

curve through three points of oc or two points and a slope

of F with respect to <x. When the program starts the line

search procedure, it estimates tx as follows.

F ( XP. + a Sp) = F (XP) -t-.oc vFp- SP = F..

,where | S | = 1 , F is the input which is considered

to be the minimum, and vF is the gradient of the function F

at p .th iteration.

- Fc + a -5S » Fopt

« = - < Fc - FoPt > ' -3£

F is the current value of F.

The minimum is obtained as follows when there are two

values of F and a slope of F.

The notations used in QNMDIF are used here.

2
F = Q < x - t - 2 S o c + R
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i X2 o <* + 2 s

= 2 0
dot .

In order that F has a minimum Q should be positive.

F = FW at a = W . .

-^ = GTP at a = W . .da

- F = FMIN at <x = 0

Then,, FW = Q W2 + 2 S W -i- R

GTP = 2 Q W + 2 W

FMIN = R

From the above three relations,

Q = -- ̂  (FW - FMIN - W •. GTP) '
W" •

2 S = -| ( FW - FMIN ) - GTP

F has a minimum a t a = - S / Q .

When there are three values of F, the minimum is obtained

as follows.

F = FW at ot = W.

F = FV at ot = V.

F = FMIN at a = 0. .

Then, . F W = Q W 2 - ^ 2 S W + R
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FV = Q V2 + 2 S V + R

FMIN = R

Let x = Q V2W ..+ 2 S V W and y = Q W2V -f- 2 S V W.

Then, .

. Q = V W (W - V)

„'• xH - y V
2 V W (W - V)

a»in = -

If F has decreased sufficiently, or KM™ is very small after

any decrease of F, then the line search is successful.

QNMDIF goes to the search direction calculation after the

success of the line search. If the line search has failed

with the forward difference calculation of the gradient, it

does the. central difference calculation of the gradient and

goes back to the line search. If the line search .was a

failure with the central difference calculation of the

gradient, QNMDIF stops with the message of the line search

failure. The convergence criteria for the optimization is

the condition that the norm of the gradient is very, small.

In some cases the norm of the gradient vector was not zero

while the objective function did not decrease. But the

signs of all components of the gradient vector were changed

during the previous two iterations. This means the

objective function had a steep valley.
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4.4 Results And Discussion

To test the optimization program the momentum theory is

used for the performance analysis. The design variables are

10 pitch angles at all spanwise stations with the objective

function F = -0.1 CT/CP. Table 4 shows the output of the

optimization program which converges after '5 iterations.

The downwash and the circulation are nearly constant over

the span as expected. The initial blade geometry for the

results of Table 4 is the rotor of Ref.(68) shown in Figure

(4-1). Figure (4-2) shows the optimum chord distribution

obtained from the momentum theory with profile drag where 10

chord widths are the design variables while the linear twist

is given and fixed. Here the chord bulges towards the root

because the linear twist is not the optimum pitch. In

figure (4-2) CT went up and CT went down from the initial

values. Fig.s (4-3) and (4-4) show the effect of profile

drag on the optimum pitch distribution obtained from 3-D

momentum theory. The effect of the profile drag is to

reduce the pitch angle near the blade root. By momentum

theory there is a clear optimum pitch distribution for fixed

chord distribution and optimum chord distribution for fixed

pitch distribution, while zero loading by having zero chord

is the optimum by vortex theory. Therefore the constraint
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on thrust was not needed in the momentum calculation but was

required for vortex theory.

The optimum rotor to give the minimum induced power is

the rotor which has a constant circulation or a constant

downwash according to the classical vortex theory using the

rigid wake geometry. Table 3 shows the results for constant

downwash obtained by changing the pitch distribution for the

free wake lifting line theory. The resulting pitch

distribution is shown in Fig.(4-5). The bound circulation

distribution is shown in Fig.(4-6). The summary of tables

are shown in Table of Optimization with thrust to power

coefficient ratios and thrust coefficients (CT/CP, CT). The

CT/CP from momentum theory for a straight linear twisted

rotor (Ref. 68) was 13.8 at CT=0.00471 (Table 3). The.

optimized pitch (say 1/r) for constant downwash gave

CT/CP=14.4- at CT=0.00328 (Table 4), but when compared at

same CT, there is very little difference from the initial

rotor. The constant downwash results from free wake theory

gave CT/CP=13.4 at CT=0.00376 ,which was constrained to have

same downwash as the one by momentum theory (Table 3).

We will now consider results using the free wake

lifting line theory with the QNMDIF optimizer. Constant

chord and variable twist results (Table 5) gave CT/CP=14.25

at CT=0.00422. Since this is at higher CT compared to the

constant downwash result of CT/CP=13.4 and CT=0.00376, when

lower CT is expected, obviously constant downwash is not
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optimum. This is also qualitatively evident from Fig. 4-17

(Table 5). Table 5 shows the result of optimization where 5

section pitch angles near the tip are used. The initial

blade geometry is the rotor of Ref.(68) shown in Fig.(4-1).

The objective function(OBJ) is F = CP/CT. The pitch angles

near the tip has decreased as a result of the optimization

as shown in Fig.(4-17). But the thrust coefficient is

decreased while CP/CT is decreased from 0.073 to 0.070.

Therefore, in table 6 the thrust coefficient is added into

the objective function in the form of a quadratic penalty

function. The given and fixed thrust coefficient is CT=

0.00422 and the initial thrust coefficient is CT= 0.00459.

The design variables are 5 section pitch angles near the

tip. The objective function is F = 10.CP/CT + 100000.*(CTT

- CT)**2. The objective function has decreased from 0.7454

to 0.6467 in Table 6. The downwash on the tip section is

reversed, that is, becomes upwash.

Adding taper gave 14.7 for CT/CP at CT=0.00416 close to

one of Table 5 in Table 7 and Fig. (4-18). With constraint

on thrust CT/CP=13.9 in Table 8. Table 7 shows the results

of optimization where the initial blade geometry is the

rotor of Ref.(68) and the design variables are two section

pitch angles and two chord widths near the blade tip. In

table 7 the objective F (now =- CT/CP) has decreased from

-13.67 to -14.74 with the result of a tapered and double

twisted rotor as shown in Fig.(4-18) by optimization. In
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table 8 the same trend is shown with the constraint on the

thrust.In Table 9 switch to more stations gave similar

results as Table 8.

As a result of previous unpublished heuristic studies *

the blade geometry of taper and double twist shown in Fig.

(4-7) was found to be optimum and is used for the heuristic

parameter optimization. Fig.s (4-8) and (4-9) show the

bound circulation distributions at various thrust

coefficients obtained by varying the root chord width while

keeping the twist and taper ratio constant. CT/CP increases

as a result of the decrease in the root chord. Fig.(4-10)

compares the bound circulation distributions at the same

thrust coefficients between the tapered and double twisted

blade and the constant chord and linear twisted blade. The

bound circulation distribution which has the peak near the

tip has the higher power coefficient than that having the

peak around the center of the blade. The downwash of the

tapered and double twisted blade has become the upwash near

the blade tip. That is, the blade is in vortex ring

condition at the tip. In vortex ring condition the maximum

residual in bound circulation does not decrease below the

convergence criterion which requires that the change in

circulation between iterations should be less than 0.5 % of

local circulation.

Fig.(4-11) shows CT/CP for the rotors shown in

Fig.(4-1) and in Fig.(4-7) with various pitch and fixed

* Ref. 69



chord. Fig.(4-11) shows that there is an optimum pitch

which gives the maximum of CT/CP with a fixed chord, while

zero loading is the optimum with zero chord. Fig.(4-12)

compares CT/CP for the tapered and double twisted rotor of

Fig.(4-7) -with that for the tapered and straight twisted

rotor of Fig.(4-13). Both blade chords used in Fig.(4-12)

are varied to get different thrust coefficients. The

tapered and straight twisted rotor is shown to be better

than the double twisted and tapered rotor. With the initial

geometry of the rotor of Fig.(4-1) the optimized rotor is

computed by using the design variable sets of (5), (6), (7)

and (8) in section (4.1). For the sets of design variable

(5) and (6) rotor of Fig.(4-1) does not change with the

constraint on CTT = 0.00459 of the initial geometry and with

objective function F = CP/CT + rp *(CTT-CT)**2,

rp =1.3*rp_j ,and r0 =100000.0. For the case of 5 design

variables of the set (7) tip pitch angles are reduced, that

is, the blade is double twisted as a result of the

optimization as shown in Fig.(4-20) and in Table (11). For

the case of 6 design variables of the set (8) root chord is

reduced, that is, the rotor has a lower solidity and a

higher ratio of thrust to power coefficient as a result of

the optimization as shown in Table 9. In Fig.(4-14) the

tapered and double twisted rotor of Fig.(4-7) is as good as

the straight twisted and constant chord rotor of Fig.(4-1).

Fig.(4-15) compares CT/CP of the rotor of Fig.(4-7) to that



obtained by the present optimization with the design

variables set (4) in section (4.1). The rotor of Fig.(4-7)

is in vortex ring condition and hence the gradient

calculation tend to be inaccurate. Hence, only one

optimization result is better than the initial rotor used.

The rotor blade which produces the better performance than

the initial rotor has only the slightly decreased root twist

compared to the initial rotor. Fig.(4-16) compares the

bound circulation distributions for the rotors of Fig.(4-7),

Fig.(4-13) and that obtained by the formal optimization.

Among them the bound circulation result of the formal

optimization has the peak circulation at the middle of the

span and the best CT/CP. Double twisted and tapered rotor

gave CT/CP=15.946 but at CT=0.0035 (Fig. 4-19 and Table 10)

compared to 15.78 for heuristic rotor (Fig. 4-7) by the

formal optimization with design variables set (8) of the

section (4-3). Fig. (4-11) shows that the effect of going

to CT=0.00416 reduces CT/CP very slightly. This is clearly

optimum and gives about 5% difference.



Table 3, Results Obtained to Give Constant Downwash,
(a) Momentum Theory Results for Rotor of Fig,(4-3)

NO. OF BLADES - 2 SOLIDITY -8.0464

CT =0.00471 CP =0.000342

CTT =0.00459 CPI =0.000234

CVT1(LOCAL) -0.00050 CVT2(GLOBAL) -0.00500

(b)

ETA CHORD
.150 .0729
.250 .0729
.350 .0729
.450 .0729
.600 .0729
.750 .0729
.825 .0729
.875 .0729
.925 .0729
.975 .0729

THETA
0.1713E+02
0.1591E+02
0.1469E+02
0.1346E+02
0.1163E+02
0.9798E+01
0.8881E+01
0.8274E+01
0.7660E+01
C.7047E+01

ALPHA WLA UT
0.7310E+01 -0.2597E-01 0.1522E+00
0.7932E+01 -0.3504E-01 0.2524E-f«0
0.7928E+01 -0.4150E-01 0.3525E+00
0.7610E+01 -8.4614E-81 0.4524E+80
0.6823E+C1 -0.5047E-01 0.6021E+00
0.5821E+01 -0.5214E-01 0.7518E+00
0.5271E4«1 -0.5204E-01 0.8266E+00
0.4895E+C1 -0.5165E-01 0.8765E4«0
0.4507E+01 -0.5096E-01 0.9264E+00
0.4113E+01 -«.4998E-01 0.9763E+C0

CL
0.7751E+00
0.8469E+00
0.8486E+00
0.8157E+00
0.7320E+00
0.6249E+00
0.5660E+00
0.5257E+00
0.4840E+00
0.4417E+00

GAM
0.4300E-02
0.7791E-02
0.1090E-01
0.1345E-01
0.1606E-01
0.1712E-01
0.1705E-01
0.1679E-01
0.1634E-01
0.1572E-01

Free Wake Results to Give Constant Dwjnmsh/VIUWCT/2-
NO. OF BLADES - 2 SOLIDITY -0.0464

CT =0.00376 CP -0.000281

CTT -0.00459 CPI =0.000181

CVT1(LOCAL) -0.00050 CVT2(GLOBAL) -0.00500

ETA
.150
.250
.350
.450
.600
.750
.825
.875
.925
.975

CHORD
.0729
.0729
.0729
.0729
.0729
.0729
.0729
.0729
.0729
.0729 .

THETA
0.3350E+02
0.2177E+02
0.1561E+02
0.1171E+02
0.8016E+01
0.6069E+01
0.6644E+01
0.8331E+01
0.9235E+01
0.7697E+01

ALPHA
0.1608E+02
0.1107E+02
0.7930E+01
0.5727E+C1
C.3545E-H31
0.2473E+01
0.3323E+01
0.5131E+01
0.6212E+01
0.4851E+01

WLA
-4S.4708E-01
-0.4723E-01
-C.4722E-«1
-«.4716E-«1
-0.4691E-01
-«.4714E-01
-0.4787E-ei
-«.4892E-«1
-0.4885E-01
-C.4846E-01

UT
0.1572E+00
0.2544E+00
0.3532E+00
0.4525E+00
0.6018E+00
0.7515E+00
0.8264E+00
0.8764E+00
0.9263E+00
0.9762E+00

CL
0.1615E+01
0.1160E+01
0.8356E+00
0.6030E+00
0.3697E+00
0.2593E+00
0.3574E+00
0.5600E+00
0.6742E+00
8.5247E+00

GAM,
0.9254E-02
0.1076E-01
0.1075E-01
0.9944E-02
0.8108E-02
0.7100E-02
0.1076E-01
0.1788E-01
0.2276E-01
0.1867E-01



Table 4,. Optimization Results Obtained by Using Momentum Theory,
F =-CT /(10, Cp), Design Variables = 10 Pitch Angles,

NO. OF BLADES- 2 SIGT -8.8464 816-6.6464

CT -8.88471 CP -0.000342 OBJ - -8.1379E+81

CTT -8.80471 CPI -0.000234 CVT1(LOCAL) -0.00050 CVT2(GLOBAL) -8.80500

ETA
.150
.250
.350
.450
.600
.750
.825
.875
.925
.975

CHORD
0.7288E-01
0.7288E-81
0.7288E-C1
8.7288E-81
0.7288E-«1
0.7288E-01
0.7288E-81
8.7288E-01
0.7288E-81
8.7288E-81

THETA
17.1314
15.9110
14.6906
13.4645
11.6310
9.7976
8.8808.
8 . 2735
7.6604
7 . 0474

ALPHA
7.3097
7.9320
7.9278
7.6102
6.8227
5.8210
5.2714
4.8953
4.5071
4.1129

WLA
-e.2597E-01
-8.3584E-01
-0.4150E-01
-0.4614E-01
-0.5047E-ei
-8.5214E-81
-«.5284E-«1
-8.5165E-01
-8.5096E-01
-8.4998E-81

UT
0.1522E+00
8.2524E+68
8.3525E488
8.4524E+88
8.6821E+88
8.7518E+88
8.8266E+88
8.8765E+88
0.9264E+00
0.9763E+80

CL
0.7751E+88
8.8469E+08
0.8486E+00
8.8157E+88
8.7328E+ee
8.6249E+80
8.5660E-f00
8.5257E+80
8.4840E+00
8.4417E+88

GAM
0.4300E-82
0.7791E-02
8.1890E-01
8.1345E-81
0.1606E-01
0.1712E-01
8.1785E-81
0.1679E-81
0.1634E-01
0.1572E-01

NO. OF BLADES - 2 SIGT -0.0464 SIG -8.8464

CT -0.08333 CP -8.000232 OBJ - -8.1436E+81

CTT -0.00471 CPI -0.000138 CVT1(LOCAL) -0.00050 CVT2(GLOBAL) -0.00500

ETA
.150
.250
.350
.450
.600
.750
.825
.875
.925
.975

CHORD
0.7288E-81
0.7288E-81
8.7288E-81
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
8.7288E-81
8.7288E-01
0.7288E-81

THETA
17.2873
16.1258
14.7296
13.8258
8.3132
6.6077
6.9414
6.1685
5.4661
4.8598

ALPHA
7.4848
8.8758
7.9552
7.2937
4.4334
3.5152
3.8539
3.3668
2.9248
2.5488

WLA
-8.2613E-81
-8.3536E-81
-8.4158E-81
-8.4517E-81
-8.4069E-81
-8.4852E-81
-8.4458E-81
-8.4283E-81
-8.4185E-81
-8.3935E-81

UT
0.1523E+00
8.2525E+88
8.3525E+88
8.4523E+08
8.6814E+80
0.7511E+88
0.8262E+00
0.8760E+00
8.9259E+88
0.9758E+00

CL
0.7850E+00
0.8622E+00
0.8515E+00
8.7818E+88
8.4758E-f88
0.3774E+88
8.4139E+00
0.3615E+00
8.3141E+80
0.2738E+00

GAM
0.4356E-02
0.7933E-02
0.1094E-01
0.1288E-81
8.1843E-81
8.1833E-81
0.1246E-01
0.1154E-01
0.1868E-81
8.9736E-82

NO. OF BLADES - 2 SIGT -8.8464 SIG -8.8464

CT -8.88325 CP -8.800226 OBJ- -8.1438E+81

CTT -8.88471 CPI -8.880133 CVT1(LOCAL) -8.88050 CVT2(GLOBAL) -8.00500

ETA
.150
.250
.350
.458
.600
.750
.825
.875
.925
.975

CHORD
8.7288E-81
8.7288E-81
8.7288E-81
8.7288E-81
8.7288E-81
0.7288E-81
8.7288E-«1
8.7288E-81
0.7288E-81
8.7288E-01

THETA
17.4919
16.3755
14.6951
12.4158
8.3528
6.6673
6.8248
5.6020
5.3732
5.3176

ALPHA
7.5283
8.2437
7.9309
6.8567
4.4604
3.5567
3.2875
2.9695
2.8681
2.8669

WLA
-8.2635E-81
-8.3572E-81
-«.4151E-81
-8.4388E-81
-8.4882E-81
-8.4876E-81
-8.4868E-81
-8.4023E-81
-8.4060E-01
-0.4173E-01

.UT
8.1523E488
8.2525E488
8.3525E+00
0.4521E+00
e.6ei4E+0e
0.7511E460
e.8268E-f88
8.8759E+88
8.9259E480
8.9759E480

CL
8.7981E-H38
8.8880E+80
8.8489E+88
0.7350E+00
8.4787E488
0.3819E+C0
0.3445E+00
8.3189E+88
8.3072E+80
8.3079E+00

GAM
8.4438E-82
0.8899E-02
0.1090E-01
8.1211E-81
8.1849E-81
0.1845E-81
8.1837E-81
0.1018E-01
0.1837E-01
0.1095E-01

NO. OF BLADES - 2 SIGT -8.8464 SIG -8.8464
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Table -Continued,

CT -8.00322 CP -0.000224 OBJ - -0.1440E+01

CTT -0.00471 CPI -0.000131 CVT1( LOCAL) -0.00050 CVT2(GLOBAL) -0.00500

ETA
.150
.250
.350
.450
.600
.750
.825
.875
.925
.975

CHORD
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
e.7288E-01
0.7288E-«1
0.7288E-01
0.7288E-01
0.7288E-01

THETA
17.9782
16.9416
14.6120
11.3615
8.4465
6.7574
5.8173
5.7425
5.5202
4.9392

ALPHA
7.8252
8.6264
7.8725
6.1111
4.5263
3.6194
3.0637
3.0671
2.9626
2.6035

WLA
-0.2686E-01
-«.3654E-«1
-«.4136E-01
-0.4135E-01
-0.4112E-01
-«.4112E-01
-«.3968E-01
-«.4089E-01
-fl.4132E-01
-8.3977E-01

UT
0.1524E-H30
0.2527E-H30
0.3524E+00
0.4519E+C0
0.6014E440
0.7511E+00
0.8260E+00
0.8760E+00
0.9259E+00
0.9758E+00

CL
0.8294E+00
0.9207E+00
0.8427E+00
0.6552E+00
0.4858E+O0
0.3886E+00
0.3290E+00
0.3294E+00
0.3182E+00
0.2797E+00

GAM
0.4606E-02
0.8478E-02
0.1082E-01
0.1079E-01
0.1065E-01
0.1064E-01
0.9904E-02
0.1052E-01
0.1074E-01
0.9945E-02

NO. OF BLADES - 2 SIGT -0.0464 SIG -0.0464

CT -0.00322 CP -0.000223 OBJ - -0.1440E+01

CTT -0.00471 CPI -0.000131 CVT1(LOCAL) -0.00050 CVT2(GLOBAL) -0.00500

ETA
.150
.250
.350
.450
.600
.750
.825
.875
.925
.975

CHORD
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01

THETA
18.5747
17.5915
14.5244
10.6263
8.3329
6.6519
6.1276
5.8515
5.4310
5.2236

ALPHA
8.1927
9.0693
7.8110
5.5992
4.4471
3.5459
3.2791
3.1432
2.9004
2.8011

WLA
-0.2748E-01
-0.3746E-01
-0.4120E-01
-0.3958E-01
-C.4075E-01
-0.4070E-01
— 0.4105E-01
-e.4139E-01
-«.4088E-01
-0.4125E-01

UT
0.1525E+00
0.2528E+00
0.3524E+00
0.4517E+00
0.6014E+00
0.7511E+00
0.8260E+00
0.8760E+00
0.9259E+00
0.9759E+00

CL
0.8681E+00
0.9679E+00
0.8361E+00
0.6004E+00
0.4773E+00
0.3807E+00
0.3521E+00
0.3376E+00
0.3115E+00
0.3009E+00

GAM
0.4824E-02
0.8916E-02
0.1074E-B1
0.9883E-02
0.1046E-01
0.1042E-01
0.1060E-01
0.1078E-01
0.1051E-01
0.1070E-01

NO. OF BLADES - 2 SIGT -0.0464 SIG -0.0464

CT -0.00328 CP -0.000227 OBJ - -0.1441E+01

CTT -0.00471 CPI -0.000134 CVT1(LOCAL) -0.00050 CVT2(GLOBAL) -0.00500

ETA
.150
.250
.350
.450
.600
.750
.825
.875
.925
.975

CHORD
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
e.7288E-01

THETA
20.0915
19.0338
14.3678
10.6785
8.5778
6.8692
6.4358
5.4642
5.3924
5.1622

ALPHA
9.1422

10.0648
7.7012
5.6354
4.6182
3.6976
3.4952
2.8742
2.8735
2.7583

WLA
-0.2902E-01
-0.3946E-01
-0.4091E-01
-0.3971E-01
-0.4153E-01
-0.4156E-01
-0.4238E-01
-0.3958E-01
-0.4069E-01
-0.4093E-01

UT
0.1528E+00
0.2531E+00
0.3524E+00
0.4517E+«0
0.6014E+00
0.7512E-H30
0.8261E+00
0.8759E+00
0.9259E+00
0.9759E+00

CL
0.9680E-M90
0.1074E+01
0.8244E+00
0.6042E+00
0.4956E+00
0.3970E+00
0.3753E-H30
0.3087E-H30
0.3086E>«0
0.2963E-H30

. GAM
0.5389E-02
0.9903E-02
0.1059E-01
0.9947E-02
0.1086E-01
0.1087E-01
0.1130E-01
0.9854E-02
0.1041E-01
0.1054E-01
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Table 5, Optimization Results Obtained by Using Free Wake Theory,'

OBJ - CP/CT

NDV - 5 PITCH ANGLES WITH WAYNE JOHNSON ROTOR

NO. OF BLADES - 2 SIGT -0.0464 SIG -0.0464

CT =0.00459 CP.-0.000336 OBJ - 0.7316E-01

CTT -0.00459 CPI -0.000229 CVT1(LOCAL) -0.00050 CVT2(GLOBAL) -0.00500

ETA
.150
.250
.350
.450
.600
.750
.825
.875
.925
.975

CHORD
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01

THETA
17.1314
15.9110
14.6906
13.4645
11.6310
9.7976
8.8808
8.2735
7.6604
7.0474

ALPHA
7.7205
8.5295
8.3062
7.5166
5.8676
4.8186
4.5787
5.2142
5.8348
4.6705

WLA
-0.2486E-01
-«.3239E-01
-0.3916E-01
-0.4688E-01
-0.6056E-01
-0.6534E-01
-0.6206E-01
-0.4677E-01
-0.2948E-01
-0.4047E-01

UT
0.1520E+00
0.2521E+00
0.3522E+00
0.4524E+00
0.6030E+00
0.7528E+00
0.8273E+00
0.8762E+00
0.9255E+00
0.9758E+00

CL
0.8242E+00
0.9142E+00
0.8903E+00
0.8042E+00
0.6266E+00
0.5173E+00
0.4932E+00
0.5605E+00
0.6250E+00
0.5009E+00

GAM
0.4567E-02
0.8399E-02
0.1143E-01
0.1326E-01
0.1377E-01
0.1419E-01
0.1487E-01
0.1790E-01
0.2108E-01
0.1781E-01

NO. OF BLADES - 2 SIGT -0.0464 SIG -0.0464

CT =0.00442 CP =0.000314 OBJ - 0.7114E-01

CTT =0.00459 CPI -0.000210 CVT1(LOCAL) -0.00050 CVT2(GLOBAL) -0.00500

ETA
.150
.250
.350
.450
.600
.750
.825
.875
.925
.975

CHORD
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0;7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01

THETA :
17.1314
15.9110
14.6906
13.4645
11.6310
9.4344
8.8605
8.3073
7.1922
4.7098

ALPHA
7.4460
8.3851
8.2564
7.5668
6.0030
4.6476
4.4548
5.1869
5.4767
3.6192

WLA
-0.2560E-01
-0.3303E-01
-0.3947E-01
-0.4648E-01
-0.5913E-01
-0.6280E-01
-0.6356E-01
-0.4770E-01
-O.2770E-01
-0.1856E-01

UT
0.1522E+00
0.2522E+00
0.3522E+00
0.4524E+00
0.6029E+00
0.7526E+00
0.8274E+00
0.8763E+00
0.9254E+00
0.9752E+00

CL
0.7897E+00
0.8961E+00
0.8841E+00
0.8107E+00
0.6428E+00
0.4979E+00
0.4775E+00
0.5567E+00
0.5884E+00
0.3889E+00

GAM
0.4379E-02
0.8235E-02
0.1135E-01
0.1336E-01
0.1412E-01
0.1366E-01
0.1440E-01
0.1778E-01
0.1984E-01
0.1382E-01

NO. OF BLADES - 2 SIGT -0.0464 SIG -0.0464

CT -0.00442 CP -0.000313 OBJ - 0.7085E-01

CTT -0.00459 CPI -0.000209 CVT1(LOCAL) -0.00050 CVT2(GLOBAL) =0.00500

ETA
,150
.250
.350
.450
.600
.750
.825
.875
.925

CHORD
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01

THETA
17.1314
15.9110
14.6906
13.4645

6310
9.4242
8.8527
8.2881
7.1482

11

ALPHA
7.4745
8.4042
8.2726
7.5872
6.0342
4.6636
4.4588
5.1769
5.4605

WLA
-e.2552E-01
-«.3294E-01
-0.3937E-01
-0.4632E-«1
-0.5880E-01
-0.6246E-01
-0.6339E-01
-0.4756E-31
-0.2725E-01

UT
0.1522E+00
0.2522E400
0.3522E+00
0.4524E+00
0.6029E+00
0.7526E+00
0.8274E+00
0.8763E+00
0.9254E+00

CL
0.7946E+00
0.8994E+00
0.8869E+00
0.8139E+00
0.6474E+00
0.5006E+00
0.4788E+00
0.5563E+00
0.5861E+00

GAM
0.4406E-02
0.8265E-02
.1138E-01
.1342E-01
.1422E-01
.1373E-01
.1444E-01

0.1777E-01
0.1976E-01

0.
0.
0.
0.
0.



Table 5, -Continued,

.975 0.7288E-01 4.6219 3.5849 -O.1765E-01 0.9752E+00 0.3842E+00 0.1365E-01

NO. OF BLADES - 2 SIGT -0.0464 SIG -0.0464

CT =0.00431 CP -0.000305 OBJ - 0.7070E-01

CTT =0.00459 CPI =0.000202 CVT1(LOCAL) =0.00050 CVT2(GLOBAL) -0.00500

ETA
.150
.250
.350
.450
.600
.750
.825
.875
.925
.975

CHORD
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01

THETA
17.1314
15.9110
14.6906
13.4645
11.6310
9.2859
8.6752
8.0866
6 . 7378
3.8324

ALPHA
7.6227
8.5099
8.3584
7.6603
6.0920
4.6155
4.3239
4.8187
5.1065
3.1679

WLA
-0.2512E-01
-0.3247E-01
-O.3884E-C1
-«.4574E-01
-0.5819E-01
-C.6127E-01
-0.6277 E-01
-C.4996E-01
-0.2634E-01
-C.1131E-01

UT
0.1521E+C0
0.2521E+00
0.3521E+00
0.4523E+00
0.6028E+00
0.7525E+00
0.8274E+00
0.8764E+00
0.9254E+00
0.9751E+00

CL
0.8131E+00
0.9126E+00
0.8980E+00
0.8242E+00
0.6561E+00
0.4964E+00
0.4645E+00
0.5159E+00
0.5480E+00
0.3403E+00

GAM
0.4506E-02
0.8385E-02
0.1152E-01
0.1359E-01
0.1441E-01
0.1361E-01
0.1400E-01
0.1648E-01
0.1848E-01
0.1209E-01

NO. OF BLADES - 2 SIGT -0.0464 SIG -0.0464

CT =0.00422 CP -0.000296 OBJ - 0.7008E-01

CTT =0.00459 CPI =0.000194 CVT1(LOCAL) =0.00050 CVT2(GLOBAL) =0.00500

ETA
.150
.250
.350
.450
.600
.750
.825
.875
.925
.975

CHORD
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-C1
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-31

THETA
17.1314
15.9110
14.6906
13.4645
11.6310
9.1590
8.5053
7.9072
6.3274
3.0588

ALPHA
7.5981
8.4854
8.3222
7.5991
6.0573
4.5814
4.2667
4.7948
4.8796
2.8007

WLA
-0.251 9 E-01
-0.3258E-01
-0.3906E-01
-0.4623E-01
-e.5855E-01
-0.6005E-01
-0.6114E-01
-0.4758 E-01
-0. 2338 E-01
-0.4391E-«2

UT
0.1521E+00
0.2521E+00
0.3522E+00
0.4524E+00
0.6029E+00
0.7524E+00
0.8273E+00
0.8763E+00
0.9253E+00
0.9750E+00

CL
0.8096E+00
0.9096E+00
0.8939E+00
0.8176E+00
0.6521E+00
0.4929E+00
0.4590E+00
0.5153E+00
0.5240E+00
0.3008E+00

GAM
0.4488E-02
0.8357E-02
0.1147E-01
0.1348E-01
0.1433E-01
0.1351E-C1
0.1384E-01
0.1645E-01
0.1767E-01
0.1 069 E-01



Table 6, Optimization Results From Free Wake Lifting Line Theory
with the Constraint on CT = CTT,

OPT.DAT;2 17-JUN-1985 17:23 Page 1

OBJ = 10.«CP/CT + 100000.*(CTT-CT)»«2

DESIGN VARIABLES - 5 TIP PITCH ANGLES

NO. OF BLADES - 2 SIGT -0.0464 SIG -0.0464

CT -0.00459 CP -0.000336 OBJ- 0.7454E+00 .

CTT -0.00422 CPI -0.000229 CVT1(LOCAL) =0.00050 CVT2(GLOBAL) -0.00500

ETA
.150
.250
.350
.450
.600
.750
.825
.875
.925
.975

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

CHORD
7288E-01
7288E-01
7288E-01
7288 E-01
7288E-01
7288 E-01
7288 E-01
7288E-01
7288 E-01
7288 E-01

THETA
17.1314
15.9110
14.6906
13.4645
11.6310
9.7976
8.8808
8.2735
7.6604
7.0474

ALPHA
7.7205
8.5295
8.3062
7.5166
5.8676
4.8186
4.5787
5.2142
5.8348
4.6705

-0
-0
-0
-0
-0
-0
-0
-0
-0
-0

WLA
.2486E-01
.3239E-01
.3916E-01
.4688 E-01
.6056E-01
.6534E-01
.6206E-01
.4677E-01
.2948E-01
.4047E-01

0
0
0
0
0
0
0
0
0
0

UT
. 1520E+00
.2521E+00
.3522E+00
. 4524E+00
.6030E+00
.7528E+00
.8273E+00
.8762E+00
.9255E+00
.9758E+00

0
0
0
0
0
0
0
0
0
0

CL
.8242E+00
.9142E+00
.8903E+00
.8042E+00
.6266E+00
.5173E+00
.4932E+00
. 5605E+00
. 6250E+00
.5009E+00

GAM
0.4567E-02
0.8399E-02
0.1143E-01
0.1326E-01
0.1377E-01
0.1419E-01
0.1487E-01
0.1790E-01
0.2108E-01
0.1781 E-01

NO. OF BLADES = 2 SIGT =0.0464 SIG =0.0464

CT -0.00409 CP -0.000286 OBJ- 0.7008E+00

CTT =0.00422 CPI -0.000185 CVT1(LOCAL) -0.00050 CVT2(GLOBAL) =0.00500

ETA
.150
.250
.350
.450
.600
.750
.825
.875
.925
.975

CHORD
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01

THETA
17.1314
15.9110
14.6906
13.4645
11.6310
7.6008
7.9392
7.4016
6.2938
5.4271

ALPHA
7.2817
8.2775
8.1825
7.5223
5.9566
3.5196
3.6599

. 4.3872
5.1088
3.8443

WLA
-0.2604E-01
-0.3351E-01
-0.3993E-01
-0.4684E-01
-0.5962E-01
-0.5351E-01
-0.6173E-01
-0.4608E-01
-0.1913E-01
-0.2694E-01

UT
0.1522E+00
0.2522E+00
0.3523E+00
0.4524E+00
0.6030E+00
0.7519E+00
0.8273E+00
0.8762E+00
0.9252E+00
0.9754E+00

CL
0.7722E+00
0.8847E+00
0.8762E+00
0.8057E+00
0.6379E+00
0.3781E+00
0.3936E+00
0.4735E+00
0.5489E+00
0.4129E+00

GAM
0.4285E-02
0.8132E-02
0.1125E-01
0.1328E-01
0.1402E-01
0.1036E-01
0.1187E-01
0.1512E-01
0.1851E-01
0.1468E-01

NO. OF BLADES - 2 SIGT -0.0464 SIG -0.0464

CT -0.00409 CP -0.000276 OBJ - 0.6765E+00

CTT -0.00422 CPI -0.000174 CVT1(LOCAL) -0.00050 CVT2(GLOBAL) -0.00500

ETA
.150
.250
.350
.450
.600
.750
.825
.875

CHORD
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01

THETA
17.1314
15.9110
14.6906
13.4645
11.6310
. 8.8853
5.4153
9.0101

ALPHA
6.9606
8.0774
8.0663
7.5024
6.0393
4.0030
3.3089
6.1797

WLA
-0.2691E-01
-0.3440E-01
-0.4065E-01
-0.4700E-«1
-0.5874E-01
-«.6406E-01
-0.3034E-01
-0.4326E-01

UT
0.1524E+00
0.2524E+00
0.3524E+00
0.4524E+00
0.6029E+00
0.7527E+00
0.8256E+00
0.8761E+00

CL
0.7356E400
0.8622E+00
0.8633E+00
0.8038E+00
0.6474E+00
0.4283E+00
0.3572E400
0.6648E+00

GAM
0.4085E-02
0.7929E-02
0.1108E-01
0.1325E-01
0.1422E-01
0.1175E-01
0.1075E-01
0.2123E-01



Table 6, -Continued,

OPT.DAT;2 17-JUN-1985 17:23

.925

.975
0.7288E-01
0.7288E-01

5.4406
2.6227

4.5877
2.5173

-0.1377E-01
-0.1793E-02

0.9251E+00
0.9750E+00

Page 2

0.4928E+60
0.2703E+00

C.1662E-C1
0.9604E-02

NO. OF BLADES - 2 SIGT -0.0464 SIG -0.0464

CT -0.00416 CP -0.000269 OBJ - 0.6467E+00

CTT -0.00422 CPI -0.000166 CVT1(LOCAL) -0.00050 CVT2(GLOBAL) -0.00500

ETA
.150
.250
.350
.450
.600
.750
.825
.875
.925

CHORD
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01

THETA
17.1314
15.9110
14.6906
13.4645
11.6310
9.5550
3.6253
7.6037
5.7371

ALPHA
7.8568
8.6675
8.5148
7.9160
6.5186
4.5979
1.9500
5.4027
4.8277

WLA
-0.2450E-01
-0.3177E-01
-0.3787E-01
-0.4371E-01
-0.5368E-01
-0.6505E-01
-0.2413E-01
-0.3363E-01
-0.1468E-01

UT
0.1520E+00
0.2520E+00
0.3520E+00
0.4521E+00
0.6024E+00
0.7528E+00
0.8254E+00
0.8756E+00
0.9251E+00

CL
0.8356E+00
0.9273E+00
0.9125E+00
0.8489E+00
0.6991E+00
0.4928E+00
0.2095E+00
0.5805E+00
0.5188E+00

GAM
0.4628E-02
0.8516E-02
0.1171E-01
0.1399E-01
0.1535E-01
0.1352E-01
0.6302E-02
0.1852E-01
0.1749E-01

.975 0.7288E-C1 2.5673 2.6123 0.7659E-03 0.9750E+00 0.2807E+00 0.9975E-02
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OF POOR

Table 7, Optimization Results with Free Wake Theory,
Design Variables = 2 tip pitch and 2 chord from 2 tip sections,

OPTIMIZATION OF WAYNE JOHNSON ROTOR

OBJ - -CT/CP

NO. OF BLADES - 2 SIGT -0.0464 SIG -0.0464

CT -0.00459 CP -0.000336 OBJ - -0.1367E+02

CTT -0.00459 CPI -0.000229 CVT1(LOCAL) -0.00050 CVT2(GLOBAL) -0.00500

ETA
.150
.250
.350
.450
.600
.750
.825
.875
.925
.975

CHORD
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-ei
0.7288E-01

THETA
17.1314
15.9110
14.6906
13.4645
11.6310
9.7976
8.8808
8.2735
7.6604
7.0474

ALPHA
7.7206
8.5296
8.3062
7.5166
5.8676
4.8186
4.5786
5.2140
5.8349
4.6706

WLA
-0.2486E-01
-0.3239E-01
-0.3916E-01
-0.4688E-01
-0.6056E-01
-0.6534E-01
-C.6206E-01
-0.4677E-01
-0.2948E-01
-0.4047E-01

UT
e.i520E4«e
0.2521E+30
0.3522E430
0.4524E+00
0.6030E+00
0.7528E400
0.8273E+00
0.8762E+00
0.9255E+00
0.9758E+00

CL
0.8242E+CO
0.9142E+00
0.8903E+00
0.8042E+00
0.6266E+00
0.5173E+00
0.4932E+00
0.5605E+00
0.6250E+ee
0.5009E+00

GAM
0.4567E-02
0.8399E-02
0.1143E-C1
0.1326E-01
0.1377E-«1
0.1419E-01
0.1487E-01
0.1790E-01
0.2108E-01
0.1781E-01

NO. OF BLADES - 2 SIGT -0.0442 SIG -0.0464

CT -0.00422 CP -0.000286 OBJ - -0.1475E+02

CTT -0.00459 CPI -0.000193 CVT1(LOCAL) -0.00050 CVT2(GLOBAL) -0.00500

ETA
.150
.250
.350
.450
.600
.750
.825
.875
.925
.975

. CHORD
0.7288E-01
0.7288E-01
0.7288E-01
e;7288E-ei
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.6051E-01
0.2429E-01

THETA
17.1314
15.9110
14.6906
13.4645
11.6310
9.7976
8.8808
8.2735
7.1375
4.2894

ALPHA
7.2951
8.2649
8.1380
7.4369
5.9244
4.8378
4.7976
5.8958
5.7162
5.3775

WLA
-0.2601E-01
-0.3356E-01
-0.4020E-O1
-0.4752E-01
-4.5996E-01
-0.6509E-01
-0.5889E-01
-0.3633E-01
-0.2295E-01
0.1852E-01

UT
0.1522E+00
0.2522E+00
0.3523E+00
0.4525E+00
0.6030E+00
0.7528E+00
0.8271E+00
0.8758E+00
0.9253E+00
0.9752E+00

CL
0.7738E+00
0.8835E+00
0.8716E+00
0.7966E+00
0.6343E+00
0.5187E+00
0.5143E+00
0.6317E+00
0.6135E+00
0.5774E+00

GAM
0.4293E-02
0.8122E-02
0.1119E-01
0.1314E-01
0.1394E-01
0.1423E-01
0.1550E-01
0.2016E-01
0.1717E-01
0.6839E-02

NO. OF BLADES - 2 SIGT -0.0439 SIG -0.0464

CT -0.00416 CP -0.000283 OBJ - -0.1474E+02 - -

CTT -0.00459 CPI -0.000192 CVT1(LOCAL) -0.00050 CVT2(GLOBAL) -0.00500

ETA
.150
.250
.350
.450
.600
.750
.825
.875
..925
.975

CHORD
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-01
0.7288E-«1
0.7288E-01
0.7288E-01
0.7288E-«1
0.5858E-01
0.1715E-01

THETA
17.1314
15.9110
14.6906
13.4645
11.6310
9.7976
8.8808
8.2735
7.0602
3.8903

ALPHA
7.2562
8.2440
8.1323
7.4501
5.9405
4.8172
4.9472
5.9687
5.6497
5.5440

WLA
-C.2611E-01
-0.3365E-01
-0.4024E-01
-«.4741E-01
-0.5979E-01
-0.6536E-01
-0.5673E-01
-0.3522E-01
-0.2278E-01
0.2815E-01

UT
0.1523E+00
0.2523E+00
0.3523E-W0
0.4525E+00
e.6030E-H9e
0.7528E+00
0.8269E+00
0.8757E-H90
0.9253E+00
0.9754E+00

CL
0.7701E+00
0.8817E+00
0.8716E-W0
0.7992E-H30
0.6375E+00
0.5168E+00
0.5319E+00
0.6415E400
0.6070E-H30
0.5956E+00

GAM
0.4273E-02
0.8105E-02
0.1119E-01
0.1318E-01
0.1401E-01
0.1418E-01
0.1603E-01
0.2047E-01
0.1645E-01
0.4981E-02

151



Table 8, Optimization Results Obtained by Using Free Wake Theory,
with Constraint of Cj = CTy. .

3-D MOMENTUM THEORY

NO. OF BLADES - 2 SOLIDITY -0.8460

CT -8.00460 CP -0.000331

CTT -0.00459 CPI -0.000226

CVT1(LOCAL) -0.00050 CVT2(GLOBAL) -0.00500

ETA
.150
.250
.350
.450
.600
.750
.825
.875
.925
.975

CHORD
.0729
.0729
.0729
.0729
.0729
.0729
.0729
.0729
.0692
.0666

THETA
0.1713E+02
0.1591E+02
0.1469E+02
0.1346E+02
0.1163E+02
0.9798E+01
0.8881E+01
0.8274E+01
0.7452E+01
0.6524E+01

ALPHA
0.7334E+01
0.7955E+01
0.7948E+01
0.7628E+01
0.6838E+01
0.5834E+01
0.5283E+01
0.4906E+01
0.4363E+01
0.3738E+01

WLA
-O.2590E-01
-0.3494E-01
-0.4138E-01
-O.4600E-01
-0.5031E-01
-0.5197E-01
-0.5187E-01
-0.5148E-01
-0.4992E-01
-0.4744E-01

UT
0.1522E+00
0.2524E+ee
e.3524E+00
0.4523E+00
0.6021E+00
0.7518E+00
0.8266E+00
0.8765E+ee
0.9263E+00
0.9762E+00

CL
0.7778E+00
0.8493E+00
0.8508E+00
0.8176E+00
0.7337E+00
0.6263E+00
0.5672E+00
0.5268E+00
0.4685E+00
0.4015E+00

GAM
0.4315E-02
0.7813E-02
0.1093E-01
0.1348E-01
0.1610E-01
0.1716E-01
0.1709E-01
0.1683E-01
0.1501E-01
0.1306E-01

NB
ZT
2T
ZT
ZT
ZT
ZT
ZT
ZT
ZT
ZT
ZT
ZT
ZT
ZT
ZT
ZT
ZT
ZT

_

•
.
•
•
•
•
•
m

m

m

m

m

m
„

'm
•

•

-

2
0.
0.
0.
-e.
-«.
-«.
-0.
-e.
-o.
-e.
-0.
-0.
-e.
-e.
-e.
-e.
-0.
-e.

KIT - 20
0000 E+ee
0000 E+00
eoeeE+ee
7300E-01
1837E4«0
4927E-01
1404E+00
3852 E+00
1778E+00
2167E+00
5996E+00
3401E+00
2988E+00
8194E+00
5063E4ee
3810E+00
1039E+01
6725E400

RES
RT •
RT •
RT •
RT •
RT •
RT •
RT •
RT •
RT •
RT •
RT •
RT •
RT •
RT •
RT •
RT •
RT •
RT •

0.7754E-04
0.1000E+00
0.5899£+00
0.9905E+00
0.8236E-01
0.5181E+Oe
0.8814E+00
0.6755E-01
0.5065E+00
0.8089E+00
e.5839E-ei
0.4836E+00
0.7792E+00
0.5061E-01
0.4552E+00
0.7747E+00
0.5061E-01 .
0.4552E+00
0.7747E+00

OPTIMIZATION OF ROTOR OF REF. 35

OBJ - ioe.»(cp+ieeee.»(cTT-CT)**2)

2 TIP PITCH AND 2 CHORDS DESIGN VARIABLES
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Table 8, -Continued,

NO. OF BLADES - 2 SOLIDITY -8.0460

CT -0.00450 CP -0.000324

CTT -0.60459 CPI -0.000221

CVT1(LOCAL) -0.00050 CVT2(GLOBAL) -0.00500

ETA
.150
.250
.350
.450
.600
.750
.825
.875
.925
.975

CHORD
.0729
.0729
.0729
.0729
.0729
.0729
.0729
.0729
.0692
.0666

THETA
0.1713E+02
0.1591E+02
0.1469E+02
0.1346E+02
0.1163E+02
0.9798E+01
0.8881E+01
0.8274E+01
0.7452E+01
0.6524E+01

ALPHA
0.7707E+31
0.8503E+01
0.8251E+01
0.7414E+01
0.5816E+01
0.4860E+01
0.4602E+01
0.5176E+01
0.5829E+01
0.4621E+01

WLA
-0.2490E-«1
-0.3251E-01
-«.3951E-01
-0.4770E-01
-0.6110E-01
-0.6480E-01
-0.6172E-01
-O.4735E-01
-0.2620E-01
-0.3239E-01

UT
0.1521E+00
0.2521E+00
0.3522E+00
0.4525E+00
0.6031E+00
0.7528E+00
0.8273E4«e
0.8763E+00
0.9254E+00
0.9755E+00

CL
0.8228E4OO
0.9112E400
0.8840E+00
0.7926E400
0.6215E+00
0.5220E+00
0.4961E+00
0.5568E+00
0.6244E+00
0.4955E+00

GAM
0.4559E-02
0.8371E-02
0.1135E-01
0.1307E-01
0.1366E-01
0.1432E-01
0.1496E-01
0.1778E-01
0.1998E-01
0.1611E-01
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Table 9, Ontimization Results Obtained Using Free Wake Ttieory
for Rotor of Fin,(4-3) with Design Variable Set(8)

OPTIMIZATION OF ROTOR OF FIG.(4-3) WITH DESIGN VARIABLE SET (8)

OBĴ P/CT-H«FN»(CTT-CT)»«2. WFN-1.3«WFO. AND WF(INITIAL)-100000.0

NO. OF BLADES - 2 SIGT -8.0464 SIC -0.0464

CT -0.00452 CP -0.000339 FM -0.635 CT/CP -13.348 OBJ - 0.7552E-01

CTT -0.00459 .CPI -0.000233 CVT1(LOCAL) -0.00050 CVT2(GLOBAL) -0.00500

ETA
.150
.225
.275
.350
.500
.670
.760
.800
.840
.880
.910
.930
.950
.970
.990

CHORD
0.7290E-C1
0.7290E-01
0.7290E-01
0.7290E-01
0.7290E-01
0.7290E-01
0.7290E-01
0.7290E-01
0.7290E-«1
0.7290E-01
0.7290E-01
0.7290E-C1
0.7290E-01
0.7290E-01
0.7290E-01

THETA
17.1337
16.2170
15.6058
14.6891
12.8556
10.7777
9.6776
9.1888
8.6999
8.2110
7.8443
7.5998
7.3554
7.1110
6.8665

ALPHA
8.0549
8.6486
8.8532
8.4609
6.8070
5.3578
4.9156
4.8084
4.8508
5.2666
5.4927
5.4204
5.0828
4.4563
3.3239

WLA
-0.2397E-01
-0.2990E-01
-0.3256E-01
-0.3820E-01
-0.5298E-01
-0.6357E-01
-0.6331E-01
-0.6128E-01
-0.5652E-01
-0.4526E-01
-0.3737E-01
-0.3539E-01
-0.3770E-01
-0.4497E-01.
-0.6129E-01

UT
0.1519E+00
0.2270E+00
0.2769E+00
0.3521E+00
0.5028E+00
0.6730E+30
0.7626E+00
0.8023E+00
0.8419E+00
0.8812E+C0
0.9108E+00
0.9307E+00
0.9507E+00
0.9710E+00
0.9919E+00

CL
0.8658E+00
0.9300E+00
0.9517E+00
0.9079E+00
0.7261E+00
0.5755E+00
0.5295E+00
0.5187E+00
0.5231E+00
0.5639E+00
0.5860E+00
0.5783E+00
0.5427E+00
0.4762E+00
0.3552E+00

GAM
0.4794E-02
0.7695E-02
0.9606E-02
0.1165E-01
0.1331E-01
0.1412E-01
0.1472E-01
0.1517E-01
0.1605E-01
0.1811E-01
0.1945E-01
0.1962E-01
0.1881E-01
0.1686E-01
0.1284E-01

NO. OF BLADES - 2 SIGT -0.0457 SIC -0.0464

CT -0.00459 CP -«.000344 FM -0̂ 639 CT/CP -13.344 OBJ- 0.7494E-01

CTT -0.00459 CPI -0.000238 CVT1(LOCAL) -0.00050 CVT2(GLOBAL) -0.00500

ETA
.150
.225
.275
.350
.500
.670
.760
.800
.840
.880
.910
.930
.950
.970
.990

CHORD
0.7177E-01
0.7177E-01
0.7177E-C1
0.7177E-01
0.7177E-01
0.7177E-01
0.7177E-01
0.7177E-01
0.7176E-01
0.7176E-01
0.7176E-01
0.7176E-01
0.7176E-01
0.7176E-01
8.7176E-01

THETA
17.3528
16.4366
15.8258
14.9095
13.0771
11.0003
9.8971
9.3931
8.8892
8.3853
8.0073
7.7554
7.5034
7.2515
6.9995

ALPHA
8.2672
8.8607
9.0662
8.6666
6.9926
5.5469
5.0961
4.9821
5.0195
5.4270
5.6382
5.5557
5.2075
4.5667
3.4089

WLA
-0.2399E-01
-0.2992E-01
-0.3259E-01
-0.3829E-01
-0.5330E-01
-0.6396E-01
-e.6383E-01
-0.6171E-01
-0.5682E-01
-0.4548E-«1
-0.3765E-01
-e.3572E-01
-0.3809E-01
-0.4549E-01
-0.6212E-01

UT
0.1519E+C0
0.2270E+00
0.2769E-h00
0.3521E+03

. 0.5028E+00
0.6730E+00
0.7627E+00
0.8024E+00
0.8419E+«0
0.8812E+00
0.9108E+00
0.9307E+00
0.9508E+00
0.9711E+00
0.9919E4«0

CL
0.8889E+00
0.9530E+00
0.9748E-f00
0.9302E440
0.7462E+00
0.5958E+00
0.5489E+00
0.5374E+00
0.5412E440
0.5811E+00
0.6017E+00
0.5928E+00
0.5561E+00
0.4881E+00
0.3643E+00

GAM
0.4845E-02
0.7762E-02
0.9687E-02
0.1175E-01
0.1346E-01
0.1439E-01
0.1502E-01
0.1547E-01
0.1635E-01
0.1837E-01
0.1966E-01
0.1980E-01
0.1897E-«1
0.1701E-01
0.1297E-01

NO. OF BLADES - 2 SIGT -0.0453 SIC -0.0464

CT -0.00457 CP -0.000342 FM -0.639 CT/CP -13.373 OBJ - 0.7482E-01
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Table 9, -Continued

CTT -8.00459 CPI -0.000237 CVT1(LOCAL) -0.00050 CVT2(GLOBAL) -0.00500

ETA
.150
.225
.275
.350
.500
.670
.760
.800
.840
.880
.910
.930
.950
.970
.990

CHORD
0.7111E-01
e.7111E-01
0.7111E-01
0.7111E-01
6.7111E-01
e.7111E-C1
e.7111E-«1
0.7111E-01
0.7111E-01
0.7111E-«1
0.7111E-01
0.7111E-01
0.7111E-01
0.7110E-01
0.7110E-01

THETA
17.3806
16.4647
15.8541
14.9382
13.1065
11.0305
9.9270
9.4209
8.9149
8.4088
8.0293
7.7763
7.5232
7.2702
7.0172

ALPHA
8.3138
8.9087
9.1147
8.7142
7.0345
5.5836
5.1300
5.0133
5.0474
5.4546
5.6692
5.5876
5.2385
4.5952
3.4320

WLA
-0.2394E-01
-0.2985E-01
-0.3250E-01
-«.3817E-«1
-«.5319E-ei
-0.6389E-01
-0.6378E-01
-0.6166E-01
-0.5679E-01
-e.4541E-01
-«.3751E-01
-0.3554E-01
-0.3790E-C1
-0.4532E-01
-0.6203E-01

UT
0.1519E+00
0.2270E-KOO
0.2769E+00
0.3521E+00
0.5028E+00
0.6730E+00
0.7627E+00
0.8024E+C0
0.8419E+00
0.8812E+00
0.9108E+00
0.9307E+00
0.9508E+00
0.9711E+00
0.9919E+00

CL
0.8940E+00
0.9583E+00
0.9801E+00
0.9354E+00
0.7507E+00
0.5998E+00
0.5525E+00
0.5408E+00
0.5442E+00
0.5841E+00
0.6050E+00
0.5962E+00
0.5595E+00
0.4911E+00
0.3668E+00

GAM
0.4829E-02
0.7733E-02
0.9650E-02
0.1171E-01
0.1342E-01
0.1435E-01
0.1498E-01
0.1543E-01
0.1629E-01
0.1830E-01
0.1959E-01
0.1973E-01
0.1891E-01
0.1696E-01
0.1293E-01

NO. OF BLADES - 2 SIGT -0.0451 SIG -0.0464

CT -0.00457 CP -0.006341 FM -0.640 CT/CP -13.386 OBJ - 0.7480E-01

CTT -0.00459 CPI -0.000237 CVT1(LOCAL) -0.00050 CVT2(GLOBAL) -0.00500

ETA
.150
.225
.275
.350
.500
.670
.760
.800
.840
.880
.910
.930
.950
.970
.990

CHORD
0.7084E-01
0.7084E-01
0.7084E-01
0.7084E-01
0.7084E-01
0.7084E-01
0.7084E-01
0.7084E-01
0.7084E-01
0.7084E-01
0.7083E-01
0.7083E-01
0.7083E-01
0.7083E-«1
0.7083E-01

THETA
17.3843
16.4703
15.8609
14.9468
13.1187
11.0468
9.9445
9.4356
8.9267
8.4177
8.0361
7.7816
7.5272
7.2727
7.0183

ALPHA
8.3291
8.9253
9.1320
8.7320
7.0513
5.6020
5.1474
5.0287
5.0601
5.4662
5.6813
5.5994
5.2494
4.6048
3.4396

WLA
-e.2391E-01
-0.2980E-01
-6.3245E-01
-0.3811E-01
-«.5315E-01
-0.6386E-01
-«.6378E-01
-0.6165E-01
-0.5677E-01
-0.4537E-C1
-e.3742E-01
-0.3544E-01
-0.3779E-01
-0.4520E-01
-0.6192E-01

UT
0.1519E+00
0.2270E+00
0.2769E+00
0.3521E+00
0.5028E-fOO
0.6730E+00
0.7627E+00
0.8024E+00
0.8419E+00
0.8812E+00
0.9108E4«0
0.9307E+00
0.9508E+00
0.9711E4«0
0.9919E+00

CL
0.8957E+00
0.9601E+00
0.9820E-WO
0.9373E+00
0.7526E+00
0.6018E+00
0.5544E+00
0.5424E+00
0.5456E+00
0.5854E+e0
0.6063E+00
0.5975E4«0
0.5606E+00
0.4922E+60
0.3676E+00

GAM
0.4819E-02
0.7719E-02
0.9632E-02
0.1169E-01
0.1340E-01
0.1435E-01
0.1498E-01
0.1542E-01
0.1627E-01
0.1827E-01
0.1956E-01
0. 1969E-01
0.1888E-01
0.1693E-01
0.1291E-01
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Table 10, Ontimization Results Obtained bv Using Free Vbte Theory
for Rotor of Fin, (4-7) v»ith Desinn Variable Set(8)

OPTIMIZATION OF ROTOR OF FIG.(4-7) WITH DESIGN VARIABLE SET(8)

OBJK5P/CT + WFN*(CTT-CT)«*2. WFN-1.3«WFO. AND WF(INITIAL)-10000e.e

NO. OF BLADES - 2 SIGT -0.0419 SIG -0.0464

CT -0.00333 CP -0.000213 FM -0.638 CT/CP -15.639 OBJ- 0.6766E-01

CTT -0.00350 CPI -0.000138 CVT1(LOCAL) -0.00050 CVT2(GLOBAL) -0.00500

ETA
.150
.225
.275
.350
.500
.670
.760
.800
.840
.880
.910
.930
.950
.970
.990

CHORD
0.7290E-41
0.7290E-01
0.7290E-01
0.7290E-01
0.7290E-01
0.7290E-01
0.7086E-C1
0.6269E-01
0.5453E-ei
0.4636E-01
0.4024E-01
0.3616E-ei
0.3208E-01
0.2799E-01
0.2391E-01

THETA
20.0535
18.6211
17.6662
16.2338
13.3690
10.1223
8.2506
6.8755
5.5004
4.1253
3.0940
2.4064
1.7189
1.0313
0.3438

ALPHA
8.9666
9.1570
9.0014
8.2461
6.9206
5.4363
4.7952
4.7642
4.5124
3.8999
3.2755
2.7238
2.1690
1.5877
0.9585

WLA
-4.2939E-01
-0.3751E-01
-0.4191E-01
-0.4911E-01
-0.5651E-01
-0.5492E-01
-0.4589E-01
-0.2949E-01
-0.1449E-01
-0.3461E-02
0.2884E-02
0.5151E-02
0.7463E-02
0.9420E-02
0.1062E-01

UT
0.1529E+00
0.2281E+00
0.2782E+00
0.3534&+40
0.5032E+ee
0.6722E+00
0.7614E+00
0.8005E+00
0.8401E+00
0.8800E+00
0.9100E+00
0.9300E+00
0.9500E+00
0.9700E+00
0.9901E+00

CL
0.9498E+00
0.9753E+«0
0.9602E+00
0.8801E+00
0.7406E+00
0.5836E+00
0.5150E+00
0.5099E+00
0.4814E+00
0.4159E+00
0.3493E+00
0.2905E+00
0.2312E+00
0.1690E+00
0.1018E+00

GAM
0.5292E-02
0.8109E-02
0.9736E-02
0.1134E-01
0.1358E-01
0.1430E-01
0.1389E-01
0.1279E-01
0.1103E-01
0.8485E-02
0.6396E-02
0.4884E-02
0.3522E-02
0.2295E-02
0.1205E-02

NO. OF BLADES - 2 SIGT -0.0417 SIG -0.0464

CT -0.00332 CP -0.000212 FM -0.638 CT/CP -15.662 OBJ- 0.6711E-01

CTT -0.00350 CPI -0.000138 CVT1(LOCAL) -0.00050 CVT2(GLOBAL) -0.00500

ETA
.150
.225
.275
.350
.see
.670
.760
.800
.840
.880
.910
.930
.950
.970
.990

CHORD
0.7251E-ei
0.7251E-01
0.7251E-01
0.7251E-01
0.7251E-01
0.7251E-01
0.7048E-01
0.6236E-01
0.5424E-01
0.4612E-01
0.4003E-01
0.3596E-01
0.3190E-01
0.2784E-01
0.2378E-01

THETA
20.0551
18.6231
17.6684
16.2364
13.3723
10.1264
8.2551
6.8796
5.5041
4.1286
3.0970
2.4093
1.7215
1.0338
0.3461

ALPHA
8.9866
9.1776
9.0208
8.2629
6.9345
5.4477
4.8044
4.7726
4.5201
3.9059
3.2798
2.7270
2.1713
1.5892
0.9593

WLA
-0.2934E-01
-0.3743E-01
-0.4182E-01
-0.4902E-01
-0.5642E-01
-0.5483E-61
-0.4583E-01
-0.2943E-01
-«.1443E-01
-0.3421E-02

0.2904E-02
0.5158E-02
0.7457E-02
0.9403E-«2
0.1060E-01

UT
0.1528E+00
0.2281E+00
0.2782E+00
0.3534E+00
0.5032E-f«e
0.6722E+00
0.7614E+00
0.8005E+00
0.8401E+00
0.8800E+00
0.9100E+00
0.9300E+00
0.9500E+00
0.9700E+00
0.9901E+00

CL
0.9520E+C0
0.9775E+00
0.9624E-W0
0.8820E4«e.
0.7421E+00
0.5848E+00
0.5159E+00
0.5108E+00
0.4823E+00
0.4166E+00
0.3498E+00
0.2908E+00
0.2314E-H00
0.1692E+00
0.1019E+00

GAM
0.5275E-02
0.8084E-02
0.9705E-02
0.1130E-01
0.1354E-01
0.1425E-01
0.1384E-01
0.1275E-01
0.1099E-01
0.8452E-02
0.6371E-02
0.4863E-02
0.3507E-02
0.2285E-02
0.1199E-02

NO. OF BLADES - 2 SIGT -0.0328 SIG -0.0464

CT -0.00351 CP -0.000221 FM -0.667 CT/CP -15.918 OBJ- 0.6284E-01
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Table 10, -Continued
CTT -0.60350 CPI -0.000152 CVT1(LOCAL) -0.00050 CVT2(GLOBAL) -0.00500

ETA
.150
.225
.275
.350
.500
.670
.760
.800
.840
.880
.910
.930
.950
.970
.990

CHORD
0.5671 E-01
0.5671E-01
0.5671 E-01
0.5671E-01
0.5671E-01
0.5671 E-01
0.5671 E-01
0.5049E-01
0.4381 E-01
0.3712E-01
0.3210E-01
0.2876E-01
0.2541 E-01
0.2207E-01
0.1873E-OV

THETA
20.8817
19.6395
18.8113
17.5691
15.0846
12.2689
10.7782
9.3121
7.7846
6.2571
5.1114
4.3477
3.5839
2.8202
2.0564

ALPHA
10.6997
11.1200
11.0855
10.2567
8.6077
7.3022
6.5586
6.4549
6.2544
5.7031
5.0532
4.4456
3.8176
3.1285
2.2803

WLA
-0.2694E-01
-0.3370E-01
-0.3731E-01
-0.4491E-01
-0.5676E-01
-0.5822E-01
-0.5607E-01
-0.3993E-01
-0.2244E-01
-0.8509E-02
-0.9243E-03
0.1590E-02
0.3875E-02
0.5219E-02
0.3868E-02

UT
0.1524E+00
0.2275E+00
0.2775E+00
0.3529E+00
0.5032E+00
0.6725E+00
0.7621E+00
0.8010E+C0
e.8403E+ee
0.8800E+00
0.9100E+00
0.9300E+00
0.9500E+00
0.9700E+00
e.9900E+ee

CL
0.1139E+01
0.1189E+01
0.1187E+01
0.1097E4O1
0.9213E400
0.7833E+00
0.7035E+00
0.6910E+00
0.6674E+00
0.6083E+00
0.5392E+00
0.4745E+00
0.4076E+00
0.3340E+00
0.2433E+00

GAM
0.4923E-02
0.7669E-02
0.9336E-02
0.1098E-01
0.1314E-01
0.1494E-01
0.1520E-01
0.1397E-01
0.1228E-01
0.9934E-02
0.7876E-02
0.6345E-02
0.4920E-02
0.3575E-02
0.2256E-02

NO. OF BLADES - 2 SIGT -0.0328 SIG -0.0464

CT -0.00349 CP -0.000219 FM -0.666 CT/CP -15.946 OBJ - 0.6274E-01

CTT -0.00350 CPI -0.000150 CVT1(LOCAL) -0.00050 CVT2(GLOBAL) -0.00500

ETA
.150
.225
.275
.350
.500
.670
.760
.800
.840
.880
.910
.930
.950
.970
.990

CHORD
0.5668 E-01
0.5668E-01
0.5668E-01
0.5668E-01
0.5668E-01
0.5668E-01
0.5668E-01
0.5048E-01
0.4380E-01
0.3711 E-01
0.3209 E-01
0.2875E-01
0.2541 E-01
0.2206E-01
0.1872E-01

THETA
20.7863
19.5482
18.7229
17.4848
15.0088
12.2026
10.7170
9.2574
7.7349
6.2125
5.0706
4.3094
3.5482
2.7870
2.0257

ALPHA
10.6279
11.0516
11.0182
10.1926
8.5516
7.2534
6.5146
6.4121
6.2150
5.6658
5.0173
4.4112
3.7851
3.0984
2.2549

WLA
-0.2688E-01
-0.3361E-01
-0.3720E-01
-0.4479 E-01
-0.5659E-01
-0.5802E-01
-0.5584E-01
-0.3976E-01
-0.2229 E-01
-0.8397E-02
-0.8477E-03
0.1653E-02
0.3927E-02
0.5272E-02
0.3960E-02

UT
0.1524E+00
0.2275E-f«0
0.2775E+00
0.3529E+00
0.5032E+00
0.6725E+00
0.7620E+00
0.8010E+00
0.8403E-fOO
0.8800E+00
0.9100E+00
0.9300E+00
0.9500E+00
0.9700E+00
0.9900E-W0

CL
0.1132E+01
0.1182E+01
0.1179E+01
0.1091E+01
0.9153E+00
0.7780E+00
0.6987E+00
0.6864E+00
0.6632E+00
0.6043E+00
0.5353E+00
0.4708E+00
0.4041E+00
0.3307E+00
0.2406E+00

GAM
0.4887E-02
0.7618E-02
0.9274E-02
0.1091 E-01
0.1305E-ei
0.1483E-01
0.1509E-01
0.1388E-01
0.1220E-01
0.9867E-02
0.7817E-02
0.6294E-02
0.4876E-02
0.3539E-02
0.2230E-02

1S7



Table 11, Optimization Results Stained !?>' Usim Free Wake Theon-'
Nil. (IK Hl.fldKS • 2 HIUI --0.0461 SIU --O.0464

CT '0.00155- L'P "0.000311' HI -0 .635 C1 /CP .--13.309' OBJ •• '0.7532E-01

err = o.ooir;9 CKI • 0.000234 uvu (LOCAL > -o.ooo'jo c v T 2 < O L 0 8 f t L > -o.oosoo

FTA
.i:;o
.22'J
.27:;
.300
.500
.670
.760
.800'
.840
.880
.910
.930
.91,0
.970
.990

CHCIRl)
0.72VOV -01
0.72VOE-01
0.72905 -01
0.72VOE-01
0.7290S.-01
0.72VOE-01
0.7-.!HHK-01
0.728BE-01
0.72H8E-01
0.72BBE-01
0.7',!HHF. -01
0.7288E-01
0.72HHt-OI
0.7288E-01
0.728HF--01

T MET ft
\ 7. 1337
16.T170
tr, . AO-.J8
11.6891
i:.'.n3:j6
10.7777
V.47/6
V. 1H88
H.A9V9
B.'.'MO
7 . 8 4 1.1
7.:,V98
7..lVi1
X . II I 0
6.86611

ALF'Hfi
10. iy.'2 •
10.0533
9.HAIM
B.9327
4.831H
3-8762
fj.:!946
S.2268
0.0631
1.9132
1.760H
1.0963
1.^JH:j
3.6316
•S.,'1W.\

ULA •
-0.1B26E-01
-O.?130t-0l
-0 . J/66E-01
-0.3'j2bE-01
-o,:;:.'74t'-oi
-0.'J'/16E-01
.-0. U6BVE-01
-0.b51lE-Ol
-O.D33VE-01
-0.5071t-01
-0.1V02E-01
-0.1880E-01
-O.riOIOE-01
-0.5053E-01
-0.6H36E-01

UT
0.151 1E+00
0.;!263E + 00
0.2761E+00
0.3518E+00
O.S028EfOO
d.67?bE-fOO
0.7621^*00
O.B019E+00
0.8417E»00
O.B815t>00
0.9113E+00
0.9313L+00
0.9'J13EtOO
O.V716E+00
0.9924E+00

CL
0. 1103E + 01
0.10»5E.*01
0. I063t+01
0.9607E+00
0.7311E+00
0.6323E+00
0. 0803E+00
0.5616E+00
0.5132E+00
0.5257E+00
0.3083E+00
0.4900E+00
0.1601E^OO
0.10B3E+00
0.3091E«00

GAM
0.6073E-02
0.8951E-02
0.1071E-01
0.1232E-01
0.1316E-01
O.lj'JOE-01
0.1612E-01
0. 1A11E-01
0.1666E-01
0.1689E-01
0.1688E-01
0.1663E-01
0.1595E-01
0.1116E-01
0.1118E-01

NO. o^ FtfiiiES • 'i sun =0.01*1 SIG --0.0161

cr -:o.ooi-iH I:F- . o.ooo.tn I-H -0 .636 C I /CP -13.298 OBJ -• 'o.752iE-oi

CTT '0.001'j» Ul-'l O . O O O T 3 9 (:VT 1 ( L.ULAL > "0.00050 C W T 2 ( GLObftU) -0.00000

ETA
.150
.2?.:;
.270
.300
.500
.670
.760
.800
.810
.8HO
.910
.930
.9bO
.9/0
.990

CHIIRtl
0.72VOE-01
0. /2VOF -01
0.7290E-01
o .72'yov.-oi
0.7290E-01
0.72VOK-OV
0.728BE-01
0. 7V8HE-01
O.V288E-01
0.7.'8HF.-Ol
0.728BE-01
0. 728HK-01
0.728BE-01
0.7'^'BHt-Ol
0.72BBC-01

IHFTA
l/.i!022
1 4 . 2iJ j'J
10.6736
14. . /061
K-.V221
10.8132
V.7410
V . ',! 4 4 't
8. 7189
H . 2'j:.'8
7.8808
7.6328
7.3818
7.13*8
6.B8B7

Al PHCi
10.2197
It). 109H
V . 9 I 9 8
H.VV04
6.6857
'j .92 SU
'...1413
'J.',!63:i
0.1015
1 .918;:
4.7V21
i.A::i;.'
4 .3121
3.8034
•;..V183

ULA
.-0.1829E-01
-0.2434E-01
-0.2771E-01
-0 .3034E-01
-0.5287E-01
-0.0/67E-01
-0.5714E-01
-0 .5061E-01
-0.5355E-01
-0 ,5i>fUE-01
-0.4910E-01
-0.1H8HE-OI
-0.5049E-01
-0.5'J64E-01
-0.6871E-01

UT
0.1011E400
0.2263E400
0.7764E400
0.301 BE 4 00
0.0028E400

• 0.6720E400
0.7621E400
0.8019E400
0.8117K400
0.8815E400
0.9113E400
0.9313E400
.O.V513E400
0.9716E400
0.9921E400

CL
O.U09E401
0.1091E401
0.1069E401
0.9670E400
0.7399E400
0.6374E400
0.5851E400
0.5661E400
0.0473E400
0.3295E400
0.5116E400
0.4930E400
0.1626E400
0.4101E400
6.3105E400

GAM
0.6107E-02
0.9001E-02
0.1077E-01
0.1240E-01
0.1306E-01
0.1562E-01
0.1625E-01
0.1654E-01
0. J679E-01
0.1701E-01
0.169VE-01
0.1673E-01
0.1604E-01
0.1453E-01
0.1123E-01

NIJ, tIK HI ADtS -•• 2 MGT .0.01A1 S10 -'0.0164

CT --0.0011,1 (,\> - 0 . 0 0 0 3 3 2 KM 0. C.ti 1 ' CT /CP -13.666 OHJ " 0.7319E-01
^-- .

CTT -o.ooi-jy I:PI -o.o'oo?.'; cvi i (I.UUAD -o.ooorio C V T ^ C O L O B A D ^o.oosoo

.DUftl :iUSER.FLUHiS.t.HUNG]OF'T .DAT I 3 24-ftUO-lV83 20!42

ETA
.l!iO
.2VO
.275
.350
.500
.670
.760
.800
.810
.880
.910
.930
.9iO
.970
.990

CHORD
0.72VOE-01
o.7:.'vot:-oi
0.71'VOE-Ol
0.7J90^-i)\
0.72VOL-01
o.7:;?oE-oi
0.71-8PE-01
0.7281t-0l
0.7281L-01
0.7X77E-OI
0.7270Er01
0./:!73E-Ol
0.7271L-01
0. 7270b:-0l
0.7268E-01

1HETA
17.276V
14.3692
l'j.7641
I1.8j&'j
13.0412
10.V8(9
V.H395
V.1630
8.1864
7.HOVH
7.3023
6.VA40
6.61:57
6.2874
r.,9191

f\l PHO
V.V318
9.90«1
9.7672
8.V02\
6.9935
6.0710
U.5408
ri.2866
5.0427
4.H2J6
1.4091
4.3V07
4.0630
1.-J48H
2.6440

ULA
-0.1933E-01
-0.2:i48E-01
-0.2688E-01
-0.3450E-01
-O.S297E-01
-0.3759E-01
-0.'J713E-01
-0.3121E-01
-O.'JOSOE-Ol
-0.4'J91E-01
-0.42BIE-01
-0.4180E-01
-0.1?52E-01
-0.4410E-01
-0.3717E-01

X

UT
0.1512E+00
0.2264E400
0.2765E400
0.3-J19E+00
0,'J02BE + 00
0.6725E400
0.7621E400
0.8018E400
O.B415E400
0.8812E400
0.9110E400
0.9309E400
0.9510E400
0.9711E400
O.VV16E400

. CL
0.1073E401
0.1069E401
0. JOt'i3E401
0.9591E400
-0.7521E400
0.6528E400
0.59S4E400
0.5676E400
0.5405E400
0.'J155E.400
0.4916E400
0.4679E400
0.432BE400
0.3780E400
0.2B15E400

GAM
0.5915E-02
0.8322E-02
0.10A2E-01
0.1230E-01
0.1378E-01
0.1600E-01
0.16j3t-01
0.165SE-01
0.16S6E-01
0.1653E-01
0, 1629E-01
0.1581E-01
0.1496E-01
0.1331E-01
0. JOllt-01

1SS
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TABLE OF OPTIMIZATION

Table 4

Table 3

Table 3

Table 5

Table 6

Table 7

Table 8

Fig. 4-3

Table' 9

Table 10

Momentum,
-Optimized

Constant
Downwash.
Free Wake

Variable
Downwash.
.Momentum

Constant CH.
Var. Twist

Same as 5,
Constrained

Tapered and
Double Twisted

Same as 7,
Constrained

Johnson
Rotor

Same as 8 with
Var. Solidity

Same as 9 with
Double Twist

CT/CP=14.4

CT/CP=13.4

CT/CP=13.8

CT/CP=14.25

CT/CP=15.46

CT/CP=14.7

CT/CP=13.9

CT/CP=13.6

CT/CP=13.39

CT/CP=15.946

CT=0. 00328

CT=0. 00376

CT=0. 00471

CT=0. 00422

CT=0. 00416

CT=0. 00416

CT=0. 00450

CT=0. 00459

CT=0. 00457

CT=0.0035

-Kr

Questionable Result - Optimization Gave Erratic Values

Compare to CT/CP = 15.78 at CT=0.0033 from Heuristically

Optimized Rotor Geometry (Fig. 4-7)
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o
•

Q

. GI .=.. .0.. DD3.7.6.... CP. .=.. .0., DDOSBil.:. .Constant. Downwash
CT = Q . Q Q U 5 S . CP = D , Q Q Q 2 2 S ; Rotor of Ref. 68

l . - Q QQ. - iAQ Q . S Q

- .. RRDIUS . '

Figure 4-6, Comparison of Bound Circulation Between Rotor of Ref ,35
and Rotor of Constant Downwash,
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o
CM

a
CT = Q.Q03S7 CP = Q,OQ02S7 CT/CP = 14,87 :

.= 26,32.

0.20 0'. UO 0 .60 0.80 . 1.00

Figure 4-8, Bound Circulation or the Double Twisted and Tapered Rotor
for Different Root Chord,
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CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS

As a test of the optimization program constant downwash

is obtained by using momentum theory and optimization using

the Quasi-Newton method. The uniform downwash or uniform

circulation is found to be not the optimum condition because

of the highly concentrated tip vortex for the maximum thrust

to power coefficient of a rotor. The classical vortex or

momentum theory can not be used for the hovering performance

optimization.

Free wake lifting line theory is found to agree better

with the experimental results in Ref.(35) than lifting

surface theory for performance analysis. The lifting body

theory which uses the superposition of source and vortex

sheets is developed and compares well in performance

prediction with other methods such as Euler solution in

Ref.(32) or panel method solution in Ref.(33) of a wing.

The free wake geometries obtained by free wake lifting

line theory is in good agreement with experimental results

in Ref.(35).

For the calculation of the self-induced velocity of a

ring vortex the formula given in Ref.(4) is used with the

vortex core size of 2 % of the rotor radius.
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It is shown that the fast free wake techniques used in

Ref,s(7-ll) give the real flow field and is necessary to

compute the rotor hovering performance because the free wake

geometry is very different from the rigid wake geometry and

hence momentum theory is not accurate. 10 to 15 spanwise

divisions of the blade are found to be sufficient for the

analysis and optimization.

The vortex core size of the ring vortices below the

rotor are calculated by the conservation of the kinetic

energy, circulation, and momentum. The work done by the

rotor is found to appear as the kinetic energy due to the

wake vortices. The core size is shown to grow because the

flow outside of the core containes more energy as the ring

vortices move downward from the rotor.

During the formal optimization of the hovering

performance it is found that the sensitive parameter to the

performance is the root chord, the collective pitch, the

taper ratio, and the degree of twist in the order of the

relative importance. When the initially linear twisted

blade is optimized with constant chord and varying pitch

only over the outer 20 % of the blade, the optimization

without constraint on CT gives a double twisted blade. With

'design variables of taper and spanwise location of the start

of taper, optimization indicated no change in geometry for

the straight twisted blade with the constraint on current
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CT. With design variables of taper and twist and spanwise

location of the start of taper and twist, the optimization

indicated a doubly twisted and tapered geometry with an

increase in CT/CP of 5%.

It is demonstrated that the formal optimization can be

used with the implicit and nonlinear objective or cost

function such as the performance of hovering rotors. The

formal optimization can be extended to the performance

optimization of forward flights of rotors with a robust

analysis code. By the addition of the free stream velocity

and the swirl loss correction the present optimization can

be extended to the propeller or wind turbine. Although the

close blade and first ring vortex encounter occurs outside

of the vortex core, a better definition of the vorticity

distribution from the roll-up of the near wake is needed.
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APPENDIX

A. A Surface Singularity Method for Computing the

Potential Flow of Thick Airfoils in Subsonic Flow

For solving the potential flow of two dimensional lifting

airfoils a superposition method which uses elementary

singularities at body surfaces is presented. The strengths

of these singularities are determined by the flow tangency

condition on body surface and the Kutta condition.

This method was developed in Ref.(34) for

three-dimensional lifting flows using three-dimensional

singularities, source and doublet, distribution on body

surface. There the nonlifting flow was solved first and

then a linearly varying doublet around the wing curve

surface at each section was added to the nonlifting flow to

satify the Kutta condition and hence to create lift. The

two-dimensional version of this approach was tested in this

analysis. It was found that for the nonlifting flow the

flow velocity at the trailing edge was infinite and

therefore a finite vorticity could not be added to the

nonlifting flow to cancel this infinite velocity. The

lifting flow is solved here independently of the nonlifting

flow.
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Hess and Smith (ref.55) computed exactly the two,

axisymraetric, or three-dimensional nonlifting flows by using

the surface source distribution. For two-dimensional

lifting flows they used three basic flows, that is, the

nonlifting flows due to uniform streams at oL =0 degree and

oL =90 degree and the flow due to a pure circulation about

airfoil, to generate the flows corresponding to a set of

angles of attack or lift coefficients. In Ref.s (56) and

(57) the doublet distribution on camber surface and the

source distribution on body surface were used and their

strengths were determined by the flow tangency condition on

each surface. There linearly varying source or

quadratically varying doublet was distributed on curved

panels obtained by fitting a paraboloid to corner points.

Also, the design problem of determining the body geometry to

have a given tangential velocity distribution was considered

first and analysis or design formulation was given by the

Green's solution of the potential Laplace equation. Basu

and Hancock (ref.58) solved the transient problem of a

sudden airfoil incidence change or an airfoil passing

through a sharp-edged gust. They employed the distribution

of sources and constant strength vorticity around airfoil

curve. The position of shed vortices were calculated from

the resultant velocities on free vortices at each time

increment. In Ref.(59) linearly varying vortex panels and a
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constant source around airfoil curve were employed together

with a vortex sheet to represent the seperated region.

There the boundary layer effect was modelled by source

distribution due to the boundary layer displacement and the

shape of the vortex sheet representing the seperated region

was calculated iteratively. Maskew (ref.10) used the

Green's function solution to compute the pressure for four

blade tip shapes which are oscillating in pitch as semi-span

wings. He applied Green's theorem outside and inside of the

blade independently and set the potential inside the blade

to be the free stream potential. In Ref.(61) the

two-dimensioanl lifting airfoil was solved by Green's

function formula and the superposition of potential due to

circulation and non-circulatory flow. There the total

potential instead of the perturbation potential was employed

and hence needed the far field potential approximation which

used the potential due to uniform flow past a unit circular

cylinder with given circulation. In Ref.(62) constant

source panels on body surface and constant doublets panels

on camber surface were employed with the flow tangency

condition on each surface. Also, the compressibility

correction method ws given according to Gothert coordinate

transformation. In Ref.(63) the Green's function formula

for compressible and steady or unsteady potential flow was

derived. There the strengths of source on body surface were
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known from normal boundary condition and linear system of

equation for the potential strength on body surface was

derived by influence coefficient method. Since the

derivative of potential which is velocity is relatively

large, the potential which was assumed to be constant within

each element in Ref.(63) varies much from panel to panel.

The accuracy becomes poor as reflected in the comparison of

the calculated results with experiments in Ref.(lO). The

approach written in Ref.(64) for the pressure calculation of

two-dimensional lifting airfoil was tried in the analysis.

It was found that the vortex panel superposition to

nonlifting flow was not appropriate.

The method used in this analysis is same as the one

developed in Ref.(34). But the lifting flow is solved

directly by the superposition of N sources and 1 constant

vorticity around airfoil curve with the N flow tangency and

1 Kutta conditions. The compressibility is handled by the

Gothert coordinate transformation used in Ref.(62). The

influence'coefficient matrix for N sources and 1 vortex is

same for one airfoil with different angles of attack. Hence

it can be inverted for all angles of attacks at once. This

method was extended to three-dimensional wing and hovering

rotor problem with free wake geometry and is applied for the

optimization of performance.
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A.I DERIVATION OF METHOD

A. 1.1 Green's Solution of Laplace Equation

The second form of Green's theorem is

dV

n dS (A-l)

where R is the region bounded by the closed surface S and

n is the outward unit normal. Let's consider the region

outside a two-dimensional airfoil as shown in figure.

Let's consider the unit length along the axis of airfoil
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cylinder. Then dV = da dz and dS = dJl dz. Let $., = <p and

$2 = x = *n r. Then V2^ = 0 in region R and V2<t>2 = 0

except at a point P.

J n • ($ Vx ~ XV<|> ) dfc + | n • (<j>Vx ~ X^<|)) d& = 0 (A-2)
da S

At the point P 7x = - e^ and n = er . . The first integral

in equation (A-2) becomes

o
£^5 J / $ p - An r • 70 j r d6 = - 2ir 0 - (A-3)

2TT

If the point P is located on the airfoil surface, the first

integral becomes -ir<j> . From equations (A-2) and (A-3),

27r QB= ( ($ Ij- - X |$ > dA where 3 = 1 or 1/2 - (A-4)p p / on on

Since *total= *oo + * and V$T = Uoo A + ^ ' * ~* ° as r

= <D u - <D A= r

- x S a*. + r f£ a* — (A-s)
'+
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For the point in region R,

<Dp = ja(Q>( - 27 *n r ) d* + J u(Q) ̂  ( ̂ An r) dA - (A-6)

where <b = ^— An r is the potential due to a two-dimensional

g

source of unit strength and — (<J>C) is the doublet. Also,oft o

a (Q) and y (Q) are the strengths of sources and doublet each.

For analysis boundary conditions we have

2?

tn r ' « — (A-7)
P U

For design conditions we have

ifc = f a(Q) £-
atp ^S 3S

ft fe ( 2¥ *n r ) d^l — (A-8)

3 3
Here, — is the derivative in a normal direction and -^r is

dnp dcp

the derivative in a selected tangential direction. S includes

the airfoil and the branch cut surfaces.

A.1.2 Methods Using the Continuity of Potential
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We use the equation (A-5) to obtain the linear system of

equations for the body surface potential <j> . The body surface

S is divided into segmenta Sv and $ is approximated to bej\
constant <j>K on each segment.

3$m _+

- — =U • n + -r^ = 0 on body surface.an oo 3n

From equation (A-5) ,

c S - c - c* } = c

where S . is the kronecker delta,pk

C_,_ = C i J ^ (An r) dS,_ D (A-ll)'pk TT ;c 3n k

b_,:= [ - 7 *n r dS,. I (A-12)Pk o
S

and W =0 for the segments not in contact with the trailing
pK.

edge. For the segments in contact with the trailing edge,

V - [ ± ? L aH (An r) dsw] — (As u

where S is the surface of the branch cut. The upper (lower)

sign must be used for the upper (lower) side of the airfoil.
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It may be noted that T = Atju „ is the Kutta condition.
J. » IL •

A. 1.3 Superposition Method of Source and Vortex or Doublet

We use the equation (A- 7) to obtain the linear equations

for source strengths and one constant vortex or one linearly

varying doublet around the body. Since vortex strength is

the derivative of normal doublet, y <Q> = V y(Q), one constant

vortex around airfoil curve is used here instead of doublet.

The body surface S is divided into segments S. and or(Q) is

approximated to be constant a(k).

where C ..is the normal velocity at p due to source segment
p,K

k of unit strength and C „ , is the normal velocity at p

due to the unit constant vortex around the airfoil curve.

One additional equation is obtained from Kutta condition.

That is,
tf . t + M = ft . £ +Mu«> ri * atx

 u°° CN atN

where 1 is the point on the lower surface of airfoil nearest

to the trailing edge and N is the point on the upper surface

of airfoil nearest to the trailing edge.

f c' . , G' 1L1 1 / ak ]•L l,k 1,N+1 J | YN+1J
U • t.
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CN,k ' <TU- I <- k ^ «- • t. — (A-15)

(Cl,k - CN,

k = 1,2, • • • , N

:p,k = J *"
V

r' = f _1 f _1
Lp,N+l J e B t i 2 T T

Let CN+l,k = Cl,k ~ CN,k

and

Then

CN+l,N+l

' L aH-' 2? ta rp > "k

s p p
cL
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C M , = f ^ ( TT- tan1 -E ) dJl - (A-19)p,N+l J 3n 2ir x a



A. 1.4- Calculation of Influence Coefficients

Let's drop 2tr from equations (A-18) and (A-19)

(A-20).

. P = i

=r

:i • = J (xi ~ x< ~ s cos9 • - ~ s sine •

V(J)
i. C(xi~x.- Scos 9.) ? + (y±- y.- S sin 9.)"] 3 dS.

2 2
(x.-x.- Scos 9.) + (y.- y.-Ssin 9. )



B) + (C5 + D)
ex + 23S + S-S ™ ~ wxi,j " " wyi,j

where

a = (x± -x.. )
2+ (y.. -y..)2

P = -C (x..̂  - x.) cos 9. -i- (y.-^-y. ) sin 9. 3

A = -cos 9. , C = -sin 9.

B = x,. - x, , D = y, - y,.

fc + yp,k

f •• ( 7 • ~ y^ ~ S sin 9 . )
|> = | tan 3 2— ds
v J.. ( x± - x.j - S cos 9..) j

-i (y-r ~ ?! ~ s sin 9- J
V(J) = I (i -— + j -2- ) tan J 3—' dS (A-23)
v f. 3x. By. (x. - x. - S cos 9. )

.AS. -(y. -y. - S sin9.) ~i + (x. -x. -S cos 9. ) "3
_J ± J 2 i 3 3 as

' (x± -x. - S cos9. )
2 + (y± - y. - S sin 9. )

2 3

0 oc + 2PS + S • S

Here, 2

a = (x± - x.. ) 4- (yi - y.j )

= C . . + C . . — (A-24)
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3 = - C (x..^ - x. ) cos 9 . + (y..^ - y . ) sin 9 . }

A = sin 6 . , C - - cos 0 .

B = -( yi - y.. ) , D = xi - x..

CP,N+1

+ E)i .-f (CS + DM ._ AS_ f j ( A S + B ) + ( C S +

J R

, AS .
U.O 1 "7
— i

^ J_

+ I :=•

I = f| AnUot + 2PAS + AS2 )/a} + (B - Ap) f '1' ̂ | 1
AS.

0

AS
2pAS. + AS2 )/oG + (D - C 3 ) f D ^| 1 "? (A-26)

D 3 JQ R J

Let A = (a - B)2

- x . ) 2 (1 - cos29. ) -i- (y^y.) (l-sin28. )

- 2 (x i ~x.) (y i ~y . ) cos 9. sin 9.}

C(x±- .x .) sin 9. -(y1-y.) cos 9. 32 = 0
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ds
+ AS.) if A = 0 (A-27)

.AS .

L 3 " • ii
, 3 + AS

The velocity on panel itself due to source is obtained

as follows.

(x
p -

X

iS

>- v2 + y= -k

* 2»-is I C*p - *k>2+ y^ <Xp -

dx
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+ I" -tan1

= yp = 0 ,

V = T^ £ -An AS + An AS } = 0 (A-29)

Vy = -I -tan-1 -AS , -1 AS .
tan — I- = .± 2 ' yp =

 ±0 (A-30)

The veocity on panel itself due to vortex is as follows

*s -i TO
tan „ - ̂

AS p

V 27T r (x_-

K dx

x - x,

2ir
-AS

-x
AS

At x = y = 0,
P ^P

V = -1 /
X 27T \

. -1 -AS . -1 AStan - tan — (A-31)
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V = 2 £ -An AS + An AS > = 0 (A-32)

A.1.5 .Compressibility Correction

The governing equation for linearized subsonic flow is

(1 - M2 ) <}> + <p =0 (A-33)oo Txx yy

Let x' = x, y' = y I 1-M2 = y 3 - (A-34)
T W

Then

Let .<))' = (1 - M2 ) 0 - (A-35)

We compute the geometry for the equivalent body using the

Gothert transformation (A-34). We compute the perturbation

potential of the equivalent body. Then the perturbation to

the real body geometry is

(A-363x 3x' 2 ' 9y 3y' p {A -



This procedure can be. drawn as follows.

body - : — > M^ - > equivalent body

influence functions ( C. . )_ on the equivalent body. i j a

boundary- value problem on real body -

. . )a /p + n.y < - ... )a

-» 00 ' - * • - > -» -> . • -»

: - n- - y- = Z n. . C.. X. = I n.- (Ĉ . i + Cy±. j )

perturbation velocities on the real body

. . .

: v = Z

where X. are the strengths of sources and vortex.
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Figure A-12.
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Figure A-19,
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Figure A-25.
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Figure A-26 .
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Figure A- 27.
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A. 2 Results and Discussion

In this section we discuss results from the

investigation of the capabilities of the surface singularity

method applied to thick airfoils in subsonic flow. In

figures (A-l) to (A-3) lift coefficients vs angle of attack

are shown for three NACA four digit airfoils. The airfoils

were divided .into 30 straight segements along their surface

curve according to cosine spacing. The experimental results

from Ref.(65) are shown together. For the symmetrical

airfoil of figure (A-l) theory and experiment agree exactly

up to 10 degree angle of attack. After 16 degree angle of

attack the experimental lift coefficient drops because of

boundary layer seperation contrast to the continuing

increase of the theoretical result. For the cambered

airfoils of figures (A-2) and (A-3) the upper airfoil

boundary loses more total pressure than lower airfoil

boundary. Hence, the conservation of total pressure is less

accurate there. Figures (A-4) and (A-5) show the effect of

the number of segments used on lift coefficient. With 60

segments figure (A-5) is the exact potential flow solution.

When the smaller number of segments is used, the lift

coefficient is smaller. Figure (A-4) shows 'that results



obtained with 20 segments are in very good agreement with

experiment.

Figure (A-6) to (A-ll) show pressure coefficients, lift

coefficients, and drag coefficients for several angles of

attack of NACA 0012 airfoil at Mach no. = 0.0. In all

cases chord direction forces are negative, but . drag

coefficients are slightly positive. The. drag coefficient

which should be zero in exact solution and is the numerical

error increases with angle of attack for this symmetrical

airfoil. Figures (A-12) to (A-19) show pressure, lift, and

drag coefficients for several angle of attack of NACA 4412

airfoil at Mach no. =0.0. The drag coefficient decreases

with angle of attack due to the leading edge suction of the

camber effect. The larger boundary layer growth and hence

the bigger displacement thickness on upper airfoil surface

than on lower airfoil surface makes the theoretical result

less accurate on the upper surface than on the lower

surface. Figures (A-20) to (A-27) show pressure, lift, and

drag coefficients for several angles of attack of NACA 4412

airfoil at . Mach no. =0.63. The. increase of lift

coefficient due to compressibility effect are shown in all

figures. But the leading edge suction decreases for

compressible flow. Unlike incompressible flow results the

numerical drag coefficients are all positive. For example,

the numerical drag coefficient increases from -0.005 to
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0.090 due to compressibility effect for-10 degree angle of

attack. Figures (A-28) to (A-35) show results obtained with

60 segments fo NACA 4412 airfoil at Mach no. =0.0. Lift

coefficients are higer with 60 segments than with 30

segments due to the better resolution of the leading edge

suction. The overall .shape, and local value of pressure

coefficients in all figures are similar to the results

obtained with 30 segments. Figures (A-36) to (A-39) compare

the compressible flow results obtained by Prandtl-Glauert

correction from incompressible flow results to the linear

compressible flow results. They show that Prandtl-Glauert

corection overpredicts lift coefficients. Figures (A-40) .to

(A-43) show Prandtl-Glauert correction results from

incompressible flow results for NACA 4412 airfoil. Compared

to figures (A-22) to (A-25) they overpredicts lift

coefficients and underpredicts drag coefficients. Figures

(A-44) and (A-45) show lift curve slope at zero angle of

attack with respect to free stream Mach no. The agreement

between theory and experiment is good below the critical

Mach no., M^ . When the critical mach number is reached,

the neglected terms in deriving subsonic potential equation

is important. They show that Prandtl-Glauert correction

overpredicts lift curve slope.

248



B. Numerical Method for Solving Nonlinear

Simultaneous Equations.

Let f, , •• - , fN be N nonlinear simultaneous equations

f± (X) =0 = - , i = 1, ••• ,N

The residuals of the functions f^ , ••• , f., replace the

the gradients of the objective function, F, in the numerical

optimization and the Jacobian of the functions , f., ••• f.. ,

replace the Hessian of the objective function, F.

The direction vector, S, which drives the residuals to be"

zero, is given as follows according to Broyden in Ref. (49).

Sp+1 = - C J.P J-1 Rp

' - ' df .
where Rp = fi(X

p ) and Jp = —^- (Xp ).

A quasl-Newton or the conjugate gradient, method of section

(4.3) can be used to approximate the inverse of Jacobian.

The solution vector at p th iteration is given as follows.

Xp+1 = Xp + <x Sp .

a Is determined by one dimensional line search in such a way

that the norm of residuals attains its minimum with respect

positive ot. The initial estimate of be is obtained as follows,
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<x I I J±j R.J I I =0 - MR..

ot = —r~i—T—

j! || denotes the norm of the vector. We can choose the

individual ot

- R. - '
a *
1 Ji1 V

Then , a, = i I ou | | .

Let's consider the system of equations F which are

the function of the independent variable vector U.

.Then, - . .
F ,(U ) + _ (U ._ u, =0

- F (un

F (Un) is the residual vector, R and - (Un ) is

the Jacobian, J. When J and J are computed exactly,

the above formula becomes the Newton's method. We can

put in the following form.

= Un - a C IT1 F (U11)

a is chosen such that the norm of the residual vector F (U

attains its minimum with respect to the positive ot.

When the Jacobian J is nonsingular and symmetric, the above

method is exact in that the solution vector, U converges
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in a finite number of iterations. Also, we can use the

approximation formula for the inverse of J given in section

(4.3) during each iteration. Then the solution vector U

converges quadratically. In the above method the Jacobian

or the inverse of the Jacobian does not have to have all

eigen values which are less than one in absolute magnitude.

In the case of Euler equations the differential equations

should be discretized with respect to all field points •

^including the boundary conditions, Then U vector becomes

mass, momentum, and'energy densities at all field and

boundary points. For the N field points and K boundary

conditions there are a system of (N +K) equations for each

component of mass, momentum, and energy densities.

Denpending on the discretization these system of equations

are grouped with respect to cell nodes or centers. Further

discussions are beyond the present study and can be found

in many publications.

251



C. 3-D Momentum Theorv

Three dimensional momentum theory assumes the

independence of each annulus of rotor radius, dr.

3-D momentum theory equates, the thrust produced by

the momentum chancre in an annulus of rotor, dr , to

the thrust obtained by the blade element.

dT = 2 w(r) dm

where dm •= 2 IT r p w< r) dr

Also,'for the blade element of dr.

dT = 0..5 p

which leads to

x (r) = —
8

a C0(r) - 3 C(r) dr

c r ( r ) 8 r io r ( r ) 0 ( r )

g(r )a
j. or c/v r

\ ( y\ 8.

8

3^

a ( r )
2

' T^

f a ( r ) 1 8n a ( r ) 0( r)
(2 1 a j

for 0 (r) < - g( r)a
3.2 TI

where x (r) = Sill and o ( r ) = ^^-
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The work done by the rotor can be calculated by

the account of the energy chancre in the wake.

dT . w(r) = dm 0.5 (2w)2

dT = dm 2 w(r)
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